Rule-Based Systems: Logic Programming

Inference Procedure for Logic Programming

Let resolvent be the query ?- Q₁, ..., Q_m

While resolvent is not empty do

- 1. Choose a query literal Q_i from resolvent.
- **2.** Choose a renamed¹ clause $H := B_1, ..., B_n$ from P such that Q_i and H unify with an most general unifier σ , i.e. $Q_i\sigma = H\sigma$
- 3. If no such Qi and clause exist, then backtrack
- 4. Remove Q_i from the resolvent
- 5. Add $B_1, ..., B_n$ to the resolvent
- 6. Add σ to σ_{all}
- 7. Apply substitution σ to the *resolvent*.

If resolvent is empty, return σ_{all} , else return failure.

¹ Renaming means that the variables in the clause get new unique identifiers

Reasoning Example

```
facebook(tom).
```

facebook(jerry).

facebook_connect(tom,jerry).

like(peter,john).

like(X,mary).

like(X,Y) :- facebook(X),facebook(Y),facebook_connect(X,Y).

?- like(tom,X).

?-like(tom,X).

12 Prof. Dr. H. Wache MSc BIS/ **KE&KT: Logic Programming**

