Logic and Constraint Programming

5- Rule-based systems
A.A. 2021/2022

Lorenzo Rossi

lorenzo.rossi@unicam.it

University of Camerino

Rule-based systems

Rule-based systems atte RETE algorithm 00 mpi fl lutio Ex
00000000000000

RULE-BASED SYSTEMS U

* Rules are the main way to express knowledge in many fields
of LLA.
* Most common rules are:
 production rules (eg.: Drools)
* logic programs (eg.: Prolog)
* They are similar, but realized in a dual way

L. Rossi LCP - Rule-based systems 1/31

* Modus Ponens:
(p(x),p(X)=q(Y))
q(y)

if it holds that p(X) implies q(Y) and p(x) holds, then q(y) holds

Es.: If it rains, then the street is wet.

Here it rains.
Then, here the street is wet.

L. Rossi LCP - Rule-based systems

Rule-based systems Patte!

RULE-BASED SYSTEMS U

(o (), p(X)—4(V))
q(y)

if it holds that p(X) implies q(Y) and p(x) holds, then q(y) holds

Es.: If it rains, then the street is wet. implication
Here it rains. premise
Then, here the street is wet. conclusion

L. Rossi LCP - Rule-based systems

Rule-based systems ithm 00 E: on
00@80000000000000

RULE-BASED SYSTEMS U

Production rules Logic programs
» Forward-chaining » Backward-chaining
» The facts activate rules that » From goal to facts,
generate new facts applying rules in a
« Pattern matching backward way
. Parallelism * Unification

 Backtracking

L. Rossi LCP - Rule-based systems 3/31

Rule-based systems
000®000000000000

RULE-BASED SYSTEMS

Production rules Logic programs
([]
[]
[J
o O ™
e o o Y
o O ° ®
[]
[}
[]
[}

L. Rossi LCP - Rule-based systems 4/31

Rule-based systems] hing: RETE
0000®00000000000

RULE-BASED SYSTEMS

Production rules Logic programs
([]
[]
[J
-tk :
[J
o—e
[J
AR
[}
[]
[}

L. Rossi LCP - Rule-based systems 5/31

OOOOOOOOOOOOOOOO

RULE-BASED SYSTEMS U

Production rules Logic programs

¢ .
7,

h}f&.’“ ’,

LCP - Rule-based systems

Rule-based systems m

RULE-BASED SYSTEMS U
Production rules Logic programs
[
[J
[
[J
[i;
[]
[J
[]
[J

L. Rossi LCP - Rule-based systems 7/31

Rule-based systems m

RULE-BASED SYSTEMS U
Production rules Logic programs
L4 ()
e 9 o0 °
e 8§ 98 o9

ww.,q_qggs_sﬁﬁ

L. Rossi LCP - Rule-based systems 8/31

Rule-based systems m

RULE-BASED SYSTEMS U
Production rules Logic programs
Ld Ld Ld

© 000 00 0.0
e0 u o8 s
wwq_qggs_sﬁﬁ

L. Rossi LCP - Rule-based systems 9/31

Rule-based systems m
RULE-BASED SYSTEMS U
Production rules Logic programs

e o o .

© 0 e 0 e 0 0.0
ee uw o8 s
wwq_qggpaﬁﬁ

L. Rossi LCP - Rule-based systems 10/31

Rule-based systems terr hing: RETE hm 00 ion
0000000000®00000

PRODUCTION RULE SYSTEMS U

 Production Rule Systems (PRS):

« are Rule Based Systems (RBS),
« are based on the Modus Ponens principle,
« rely on a reactive/generative approach

L. Rossi LCP - Rule-based systems 11/31

Rule-based systems ithm 00 E
00000000000e0000

WHEN A PRS IS A RIGHT CHOICE? U

» The problem is too complex for traditional coding approaches:
rules provide a more abstract view, preventing fragile
implementations

* The problem is not fully known
* Flexibility, when system logic changes often over time
+ Domain knowledge readily available

L. Rossi LCP - Rule-based systems 12/31

Rule-based systems Pattern Matching: RETE algorithm Rete00 Examples Conflict resolution and Execution
000000000000 e000 000000000000 [e] (e]e]

EXAMPLE SCENARIO e

6

L. Rossi LCP - Rule-based systems 13/31

Rule-based systems terr hing: RETE hm
0000000000000800

PRODUCTION RULE SYSTEMS U

Architecture and working schema

Inference Engine
(Rete0O / Leaps)

ction) Pattern ng
ry Matcher
) (facts)
Agenda

L. Rossi LCP - Rule-based systems 14/31

Rule-based systems
0000000000000800

PRODUCTION RULE SYSTEMS

Architecture and working schema

Productions:
Patterns —
+ Actions

Pattern
Matching

——

Facts:

Conflict
Resolution

Execution

r
triples —» WM &
(&

(now beans)

L. Rossi LCP - Rule-based systems

14/31

Rule-based systems m nan
0000000000000080

PRODUCTION RULE SYSTEMS U

* Rules are stored in the Production Memory (PM)

Facts are stored in the Working Memory (WM), where they can
be changed or retracted

* Inference engine applies to data in the WM the rules in in the
PM to deduce new information

» The Agenda deals with the execution order in case of conflicts,
using conflict resolution strategies

L. Rossi LCP - Rule-based systems 15/31

Rule-based systems e it h 0 ampl

0000000000000 00e

PRODUCTION RULE SYSTEMS

Architecture and working schema

Productions: @
Patterns —
+ Actions

Conflict

5 Execution
Resolution

Facts:
triples —
(now beans) H

Output COMPUTATION IN 3 PHASES

L. Rossi LCP - Rule-based systems 16/31

Rule-based systems terr RETE hm 00 Examp ion
000000000000000e

PRODUCTION RULE SYSTEMS U

Architecture and working schema

Productions:
Patterns —
+ Actions

B
Facts:

triples —
(now beans)

Output COMPUTATION IN 3 PHASES

L. Rossi LCP - Rule-based systems 16/31

Pattern Matching: RETE
algorithm

Pattern Matching: RETE algorithm Rete00 Exa
000000000000

RETE ALGORITHM U

RETE is a pattern matching algorithm for implementing rule-based
systems.

The Rete algorithm was designed by
Charles L. Forgy of Carnegie Mellon
University, first published in a working
paper in 1974, and later elaborated in
his 1979 Ph.D. thesis and a 1982 pa-
per.

L. Rossi LCP - Rule-based systems 17/31

Pattern Matching: RETE algorithm n an ition
0@0000000000

RETE NETWORK U

The Rete network is the brain behinf the Rete algorithm

It is made of nodes that each hold a list of objects that satisfy some
associated condition

The original Rete algorithm worked out of facts, while commercial
engines have evolved to be object-oriented nowadays

L. Rossi LCP - Rule-based systems 18/31

Pattern Matching: RETE algorithm
008000000000

RETE NETWORK

>ALFA NODES

The discrimination tree starts with Alfa nodes

'T Alfa nodes are created for each fact,
then attributes are appended
' Each node represents an additional

test to the series of conditions ap-

@ plied upstream

L. Rossi LCP - Rule-based systems 19/31

Ru t Pattern Matching: RETE algorithm 00 mpl fl lutio Ex
000@00000000

RETE NETWORK
>BETA NODES “

Nodes are then connected across facts into Beta nodes

Those nodes combine the list of facts
that verify conditions on one branch
with the list of facts that verify the con-
ditions on another branch

L. Rossi LCP - Rule-based systems 20/31

Ru t Pattern Matching: RETE algorithm 00 mpl fl lutio Ex
¢ 0000@0000000

RETE NETWORK U

The path eventually ends with the ac-
tion part of the rule

The content of the actions is irrelevant

for the Rete network

L. Rossi LCP - Rule-based systems 21/31

Pattern Matching: RETE algorithm

RETE ALGORITHM
>RETE NETWORK

Rete
Type Nodes Select Nodes. Alpha
Memory _
Root:
Node Aeha
Memory
Facts ::>
A
\

Alpha
Memory

Dummy
Input

Beta
Memory

_
" Beta Network

Join Nodes

Terminal Nodes
Assertions &

Retractions

¢

Agenda (== Conflict
L. Rossi

Resolution

Pattern Matching: RETE algorithm 00 ion
000000800000

RETEQOO U

* The Rete implementation used in Drools is called ReteOO

« Itis an enhanced and optimized implementation of the Rete
algorithm specifically for object-oriented systems

L. Rossi LCP - Rule-based systems 23/31

Rule Pattern Matching: RETE algorithm 00 Exa ct tion an
0000000@0000

RETEOO
>O0BJECT TYPE NODE u

When using ReteOO, the root node is where all objects (facts) enter
the network. From there, it immediately goes to the
ObjectTypeNode.

The ObjectTypeNode helps to reduce the workload of the rules
engine. To make things efficient, the ObjectTypeNode is used so that
the engine only passes objects to the nodes that match the object’s
type

An inserted object retrieves a list of valid ObjectTypesNodes through
a lookup in a HashMap from the object’s class. If this list does not
exist, it scans all the ObjectTypeNodes to find valid matches

L. Rossi LCP - Rule-based systems 24/31

Pattern Matching: RETE algorithm n an ition
00000000 e000

RETEOO
>ALFANODES “

AlfaNodes are used to evaluate literal conditions. When a rule has
multiple literal conditions for a single object type, they are linked
together. E.g., if an application asserts an object, it must first satisfy
the first literal condition before it can proceed to the next AlfaNode

AlfaNodes are propagated using ObjectTypeNodes. Each time an
AlfaNode is added to an ObjectTypeNode, it adds the literal value as
a key to the HashMap with the AlfaNode as the value.

L. Rossi LCP - Rule-based systems 25/31

Pattern Matching: RETE algorithm n an ition
000000000800

RETEOO
>ALFANODES “

When a new instance enters the ObjectType node, rather than
propagating to each AlfaNode, it retrieves the correct AlfaNode
from the HashMap. This avoids unnecessary literal checks.

When facts enter from one side, you may do a hash lookup returning
potentially valid candidates (referred to as indexing). At any point a
valid join is found, the Tuple joins with the Object (referred to as a
partial match) and then propagates to the next node.

L. Rossi LCP - Rule-based systems 26/31

Pattern Matching: RETE algorithm n an ition
000000000080

RETEOO
>BETANODES “

BetaNodes are used to compare two objects and their fields. The
objects may be of the same or different types

Alfa memory refers to the left input on a BetaNode. Beta memory is
the term used to refer to the right input of a BetaNode

When facts enter from one side, if a valid join is found, the object
(referred to as a partial match) and then propagates to the next node

L. Rossi LCP - Rule-based systems 27/31

Ri t Pattern Matching: RETE algorithm 00 mp fl lutic E tion
00000000000 e

RETEOO
>TERMINALNODES “

Terminal nodes are used to indicate when a single rule matches all its
conditions (that is, the rule has a full match). A rule with an OR
conditional disjunctive connective results in a sub-rule generation for
each possible logical branch. Because of this, one rule can have
multiple terminal nodes

L. Rossi LCP - Rule-based systems 28/31

Rete00 Examples

=N

rule "Find Bobs" [Root node
when
$p: Person(name=="Bob")
then
System.out.println($gp);

Entry Point nodes

end

rule "Find Bobs" - Root node

when
$p: Person(|name=="Bob") Entry Point nodes
then

System.out.println($gp);

end Object Type nodes

rule "Find Bobs" [Root node
when

|$p: Person("name:: Bob") | ® Entry Point nodes
then

System.out.println($gp);
end . Object Type nodes

Alfa nodes

rule "Find Bobs" () Root node
when
$p: Person(|name=="Bob") ®
then
System.out.println(gp);

end . Object Type nodes

Entry Point nodes

Alfa nodes

i Memory nodes

rule "Find Bobs" (@ Root node
when

$PZ Per‘son(name=="Bob) o Entry Point nodes
then

System.out.println(gp);
end . Object Type nodes

. Alfa nodes

i Memory nodes

NB: facts in a (Alfa) Memory Node match with a simple pattern!

rule "Find Bobs" (] Root node

when

$p: Person(|name=="Bob")

then
System.out.println(gp);

Entry Point nodes

end Object Type nodes

Alfa nodes

y
I Memory nodes

Terminal nodes

rule "Find Bobs"
when

$p: Person(|name=="Bob")

then
System.out.println($gp);
end

Root node

Entry Point nodes

Object Type nodes

Alfa nodes

Memory nodes

Terminal nodes

ALFA NETWORK

rule "Find Bobs"
when

$p: Person(|name=="Bob")

then
System.out.println($gp);
end

Root node

Entry Point nodes

Object Type nodes

Alfa nodes

Memory nodes

Terminal nodes

ALFA NETWORK

rule "Find Bobs"
when

$p: Person(|[name=="Bob")

then
System.out.println($gp);
end

Root node

Entry Point nodes

Object Type nodes

Alfa nodes

Memory nodes

Terminal nodes

ALFA NETWORK

rule "Find Bobs"

when

$p: Person(|[name=="Bob")
then

System.out.println($gp);
end

pl: Person("Bob", null)

P
LoWM

Person[Bob, <null>]

Root node

Entry Point nodes

Object Type nodes

Alfa nodes

Memory nodes

Terminal nodes

ALFA NETWORK

rule "Find Bobs"

when

$p: Person(|[name=="Bob")

then
System.out.println($gp);

end
pl: Person("Bob", null)
ST T a al:Address("Via Po 2", 40068,
1 1 " "
| WM i 'San Lazzaro")

Person[Bob, <null>]

Root node

Entry Point nodes

Object Type nodes

Alfa nodes

Memory nodes

Terminal nodes

ALFA NETWORK

rule "Find Bobs"

when

$p: Person(|[name=="Bob")

then
System.out.println($gp);

end
pl: Person("Bob", null)
ST T a al:Address("Via Po 2", 40068,
1 1 " "
| WM i 'San Lazzaro")

~ p2: Person("Bob", al)

Person[Bob, <null>]

Person[Bob, Address[Via Po 2, 40068, San Lazzaro]]

Root node

Entry Point nodes

Object Type nodes

Alfa nodes

Memory nodes

Terminal nodes

ALFA NETWORK

rule "Find Bobs"

when

$p: Person(|[name=="Bob")

then
System.out.println($gp);

end

pl: Person("Bob", null)

ST T a al:Address("Via Po 2", 40068,
| | " "

| WM i 'San Lazzaro")
~—— ~ p2: Person("Bob", al)

p3: Person("Frank”, al)

Person[Bob, <null>]

Person[Bob, Address[Via Po 2, 40068, San Lazzaro]]

Root node

Entry Point nodes

Object Type nodes

Alfa nodes

Memory nodes

Terminal nodes

ALFA NETWORK

o~
1
~’

@

rule "Find Bobs and addresses" Root node
when

$a: Address()

$p: Person(name=="Bob")
then

System.out.println($p+"/"+$a+" ");
end

Entry Point nodes

rule "Find Bobs and addresses"” (- Root node

when
Entry Point nodes
$p: Person(name=="Bob")

then Object Type nodes
System.out.println($p+"/"+$a+" ");

end

rule "Find Bobs and addresses” [Root node

when

$a: Address Entry Point nodes

$p: Person(name=="Bob")
then Object Type nodes

System.out.println($p+"/"+$a+" ");
end

Memory nodes

rule "Find Bobs and addresses” [Root node

when

$a: Address() Entry Point nodes
$p: Person(|name=="Bob")
then Object Type nodes

System.out.println($p+"/"+$a+" ");
end

Memory nodes

rule "Find Bobs and addresses”

when

I$a: Address()

$p: Person(|hame=="Bob") |
then

System.out.println($p+"/"+$a+" ");

end

Root node

Entry Point nodes

Object Type nodes

Alfa nodes

Memory nodes

rule "Find Bobs and addresses”

when

$a: Address()

$p: Person(|hame=="Bob") If
then

System.out.println(gp+"/"+$a+" ");

end

Root node

Entry Point nodes

Object Type nodes

Alfa nodes

Memory nodes

rule "Find Bobs and addresses”
when

ame=="Bob"

then
System.out.println(gp+"/"+$a+" ");
end

Root node

Entry Point nodes

Object Type nodes

Alfa nodes

Memory nodes

Beta nodes

rule "Find Bobs and addresses” [Root node
when

Entry Point nodes

ame=="Bob"
then Object Type nodes
System.out.println(gp+"/"+$a+" ");
end Alfa nodes

Memory nodes

Beta nodes

NB: Beta Nodes make cartesian product of objects filtered by Alfa father!

rule "Find Bobs and addresses” [Root node

Entry Point nodes

ame=="Bob"

Object Type nodes
System.out.println(gp+"/"+$a+" ");

end Alfa nodes

Memory nodes

Beta nodes

Memory nodes

rule "Find Bobs and addresses” [Root node

Entry Point nodes

ame=="Bob"

Object Type nodes
System.out.println(gp+"/"+$a+" ");

end Alfa nodes

Memory nodes

Beta nodes

Memory nodes

NB: tuple in a(Beta) Memory Node match with a composite pattern!

~

rule "Find Bobs and addresses” (Root node

Entry Point nodes

ame=="Bob"

Object Type nodes
System.out.println(gp+"/"+$a+" ");
end Alfa nodes
Memory nodes
Beta nodes

Memory nodes

Terminal nodes

rule "Find Bobs and addresses” [Root node

Entry Point nodes

ame=="Bob"

Object Type nodes
System.out.println(gp+"/"+$a+" ");
end Alfa nodes
Memory nodes
Beta nodes

Memory nodes

Terminal nodes

rule "Find Bobs and addresses” [Root node

Entry Point nodes

ame=="Bob"

Object Type nodes
System.out.println(gp+"/"+$a+" ");
end Alfa nodes
Memory nodes
Beta nodes

Memory nodes

Terminal nodes

NB: nodes of the previous rules are shared!

rule "Find Bobs and addresses” (- Root node

Entry Point nodes

ame=="Bob"

Object Type nodes
System.out.println(gp+"/"+$a+" ");
end Alfa nodes
Memory nodes
Beta nodes

Memory nodes

Terminal nodes

rule "Find Bobs and addresses”

ame=="Bob"

System.out.println(gp+"/"+$a+" ");
end

J Root node

Entry Point nodes

Object Type nodes

Alfa nodes

Memory nodes

Beta nodes

Memory nodes

Terminal nodes

ALFA NETWORK

rule "Find Bobs and addresses” (- Root node

Entry Point nodes

ame=="Bob"

Object Type nodes
System.out.println(gp+"/"+$a+" ");
end Alfa nodes

ALFA NETWORK

Memory nodes

Beta nodes

BETA

~
o
o
=
=
w
2

Memory nodes

Terminal nodes

rule "Find Bobs and addresses”

ame=="Bob"

System.out.println(gp+"/"+$a+" ");
end

J Root node

Entry Point nodes

Object Type nodes

Alfa nodes

Memory nodes

Beta nodes

Memory nodes

Terminal nodes

ALFA NETWORK

BETA
NETWORK

rule "Find Bobs and addresses”

$a: Address()

end

Root node

Entry Point nodes

Object Type nodes

Alfa nodes

Memory nodes

Beta nodes

Memory nodes

Terminal nodes

ALFA NETWORK

BETA
NETWORK

rule "Find Bobs and addresses”

)
hame=="Bob")

System.out.println($p+"/"+$a+" ");

end
al: Address("Via Po 2", 40068,
_____ "San Lazzaro")

Root node

Entry Point nodes

Object Type nodes

Alfa nodes

Memory nodes

Beta nodes

Memory nodes

Terminal nodes

ALFA NETWORK

BETA
NETWORK

rule "Find Bobs and addresses”

)

ame=="Bob"

System.out.println($p+"/"+$a+" ");

end
al: Address("Via Po 2", 40068,
e "San Lazzaro")
oo :AI pl: Person("Bob”, null)

Person[p1, -]/Address[al]

A Y
/

Root node

Entry Point nodes

Object Type nodes

Alfa nodes

Memory nodes

Beta nodes

Memory nodes

Terminal nodes

ALFA NETWORK

BETA
NETWORK

rule "Find Bobs and addresses” Root node

()
) Entry Point nodes
: ame=="Bob"
Object Type nodes
System.out.println($p+"/"+$a+" ");
end Alfa nodes
al: Address("Via Po 2", 40068,
R "San Lazzaro") ; ;
= ___ 2 pl: Person("Bob", null) ZZ 2 Memory nodes
: WM : a2: Address("Via Roma 5",
e — - 40128, "Bologna") E——
pl-al
Pl Memory nodes
Person[p1, -]/Address[al] Person[pl, -]/Address[a2]
- Terminal nodes

ALFA NETWORK

BETA
NETWORK

rule "Find Bobs and addresses”

)
hame=="Bob")

System.out.println($p+"/"+$a+" ");
end

al: Address("Via Po 2", 40068,
"San Lazzaro")

N e e - A pl: Person("Bob", null)
: WM : a2: Address("Via Roma 5",
~————— - 40128, "Bologna")

p2: Person("Bob", al)

Person[p1, -]/Address[al] Person[pl, -]/Address[a2]

Person[p2, -]/Address[al] Person[p2, al]/Address[a2]

Root node

Entry Point nodes

Object Type nodes

Alfa nodes

Memory nodes

Beta nodes

Memory nodes

Terminal nodes

~
o<
o
=
=
w
z
<
w
-
<

b4
<&
L=
o -

w

z

rule "Find Bobs and addresses”

)
hame=="Bob")

System.out.println($p+"/"+$a+" ");
end

al: Address("Via Po 2", 40068,
"San Lazzaro")

N e e - A pl: Person("Bob", null)
: WM : a2: Address("Via Roma 5",
~————— - 40128, "Bologna")

p2: Person("Bob", al)
p3: Person("Giacomo", al)

Person[p1, -]/Address[al] Person[pl, -]/Address[a2]

Person[p2, -]/Address[al] Person[p2, al]/Address[a2]

Root node

Entry Point nodes

Object Type nodes

Alfa nodes

Memory nodes

Beta nodes

Memory nodes

Terminal nodes

~
o<
o
=
=
w
z
<
w
-
<

b4
<&
L=
o -

w

z

rule "Find Bobs and addresses”

)
hame=="Bob")

System.out.println($p+"/"+$a+" ");
end

al: Address("Via Po 2", 40068,
"San Lazzaro")

N e e - A pl: Person("Bob", null)
: WM : a2: Address("Via Roma 5",
~————— - 40128, "Bologna")

p2: Person("Bob", al)
p3: Person("Giacomo", al)

Person[p1, -]/Address[al] Person[pl, -]/Address[a2]

Person[p2, -]/Address[al] Person[p2, al]/Address[a2]

Root node

Entry Point nodes

Object Type nodes

Alfa nodes

Memory nodes

Beta nodes

Memory nodes

Terminal nodes

~
o<
o
=
=
w
z
<
w
-
<

b4
<&
L=
o -

w

z

rule "Find Bob with its address"” () Root node

wben Entry Point nodes
$a: Address()

$p: Person(|hame=="Bob", | Object Type nodes
address == $a)
Alfa nodes
then
System.out.println($p); Dummy nodes
end

Memory nodes

rule "Find Bob with its address"” () Root node

wben Entry Point nodes
$a: Address I

$p: Person(|hame=="Bob", |

address == $a)
Alfa nodes

Object Type nodes

then
System.out.println($p); > Dummy nodes

end
Memory nodes

NB: this Alfa node contains a cross reference that cannot be resolved.

rule "Find Bob with its address” (W Root node

when Entry Point nodes
$a: Address

$p: Person(|hame=="Bob", Object Type nodes
ddress == %a
Alfa nodes
then
System.out.println($p); o) Dummy nodes
end

Memory nodes

Beta nodes

rule "Find Bob with its address” .

[Root node
Entry Point nodes
$a: Address
$p: Person(|hame=="Bob", Object Type nodes
ddress == %a
Alfa nodes
then
System.out.println($p); O Dummy nodes
end

—

Memory nodes

Beta nodes

~~a —

~

Delayed nodes

NB: the previous Alfa node is inserted here because it can resolve the cross reference.

rule "Find Bob with its address” (] Root node

Entry Point nodes
$a: Address

$p: Person(|hame=="Bob", Object Type nodes

ddress == %a
Alfa nodes
en

System.out.println(8p);
end

b

Dummy nodes

e

Memory nodes

Beta nodes

~~a —

~

Delayed nodes

Memory nodes

Terminal nodes

rule

"Find Bob with its address"”

$a: Address

$p: Person(|hame=="Bob",
ddress == $a

en

System.out.println(8p);

end

Root node

Entry Point nodes
Object Type nodes
Alfa nodes

Dummy nodes

-

Memory nodes

Beta nodes

~~a —

~

Delayed nodes
Memory nodes

Terminal nodes

rule

"Find Bob with its address"”

$a: Address

$p: Person(|hame=="Bob",
ddress == $a

en

System.out.println(8p);

end

Root node

Entry Point nodes
Object Type nodes
Alfa nodes

Dummy nodes

-

Memory nodes

Beta nodes

~~a —

~

Delayed nodes

Memory nodes

Terminal nodes

rule "Find Bob with its address” (W Root node

Entry Point nodes
$a: Address

$p: Person(|hame=="Bob",

Object Type nodes

ddress == %a
Alfa nodes
en
System.out.println(8p); Dummy nodes
end

Memory nodes

Beta nodes

Delayed nodes

Memory nodes

Terminal nodes

rule

"Find Bob with its address"”

$a: Address

$p: Person(|hame=="Bob",
ddress == $a

en

System.out.println(8p);

end

Root node

Entry Point nodes

Object Type nodes

Alfa nodes

Dummy nodes

-

Memory nodes

Beta nodes

Seafnem

~

Delayed nodes

Memory nodes

Terminal nodes

ALFA NETWORK

BETA NETWORK

rule "Find Bob with its address"” (W

$a: Address(

$p: Person(|

hame=="Bob",

en

System.out.println($p);

end

wIIIIIZa
1 1
I WM [

address ==

Root node

Entry Point nodes
Object Type nodes
Alfa nodes

Dummy nodes

Memory nodes

Beta nodes

Delayed nodes

Memory nodes

Terminal nodes

ALFA NETWORK

BETA NETWORK

rule "Find Bob with its address"” (W

$a: Address(

$p: Person(|hame=="Bob",

address ==

en
System.out.println($p);

end al
al: Address("Via Po 2", 40068,
"San Lazzaro")
I 10
| 1
WM

Root node

Entry Point nodes
Object Type nodes
Alfa nodes

Dummy nodes

Memory nodes

Beta nodes

Delayed nodes

Memory nodes

Terminal nodes

ALFA NETWORK

BETA NETWORK

rule "Find Bob with its address"” (W

$a: Address(

$p: Person(|hame=="Bob",

address ==

en
System.out.println($p);

end al
al: Address("Via Po 2", 40068,
"San Lazzaro")
v::::__::*l pl: Person("Bob", null)
WM

plal

Root node

Entry Point nodes
Object Type nodes
Alfa nodes

Dummy nodes

Memory nodes

Beta nodes

Delayed nodes

Memory nodes

Terminal nodes

ALFA NETWORK

BETA NETWORK

rule "Find Bob with its address"”

$a: Address(

$p: Person(|hame=="Bob",

address ==

en
System.out.println($p);

end al
al: Address("Via Po 2", 40068, o
o "San Lazzaro")

N - :AI pl: Person("Bob", null)

: WM | a2: Address("Via Roma 5",

S - 40128, "Bologna")
plal
pla2

Root node

Entry Point nodes
Object Type nodes
Alfa nodes

Dummy nodes

Memory nodes

Beta nodes

Delayed nodes

Memory nodes

Terminal nodes

ALFA NETWORK

BETA NETWORK

rule "Find Bob with its address"” (W Root node

$a: Address(

$p: Person(|hame=="Bob",

Entry Point nodes

Object Type nodes

address ==
Alfa nodes

en

System.out.println($p); Dummy nodes
end al
al: Address("Via Po 2", 40068, o Memory nodes
o "San Lazzaro")
e = AI pl: Person("Bob", null) Beta nodes
: WM | a2: Address("Via Roma 5",

~————— - 40128, "Bologna") Delayed nodes

p2: Person("Bob", al) Pl

pla2

Memory nodes

p2.al
Person[Francesco, Address[Via Po 2, 40068, San Lazzaro]] [WZXH
_ Terminal nodes

ALFA NETWORK

BETA NETWORK

rule "Find Bob with its address"” (W Root node

$a: Address(

$p: Person(|hame=="Bob",

Entry Point nodes

Object Type nodes

address ==
Alfa nodes

en

System.out.println($p); Dummy nodes

n
end al: Address("Via Po 2", 40068, Z; Memory nodes
"San Lazzaro")

A pl: Person("Bob", null) Beta nodes

: WM : a2: Address("Via Roma 5",

S ———— > 40128, "Bologna") Delayed nodes
p2: Person("Bob", al) plal
p3: Person("Frank", al) pla2 Memory nodes

p2.al
Person[Francesco, Address[Via Po 2, 40068, San Lazzaro]] [WZXH
_ Terminal nodes

ALFA NETWORK

BETA NETWORK

FIFO

llllllIlll A
& o

L. Rossi LCP - Rule-based systems 29/31

L. Rossi

Filtered object
= ref. rule

-salience
- code

- Logical actions
- Side effects

EXEC

AN

o]

LCP - Rule-based systems

e

29/31

Conflict resolution and
Execution

CONFLICT RESOLUTION AND EXECUTION

L. Rossi

rule "rl1"
when
FO
then
assert(new G());
end

LCP - Rule-based systems

rule "r2"
when
#f: FQ)
then
retract($f);
end

L. Rossi

First insert G,
then retract F.

Conflict resolution and Executi

rule "r1" rule "r2"
when when
FO £ FQ)
then then
assert(new G()); retract($f);
end end
@ <al rl<r?
——
rule "r1" rule "r2"

P
I_ ~)qL A _J
First retract F,

al cannot be applied,
G never inserted.

LCP - Rule-based systems

salience 180 salience 5

Estabilish a precedence
fixed order between
rland r2.

Rule attern | RETE ul 00 E: Conflict resolution and Execution
oe

REFERENCES U

+ Charles L. Forgy, “RETE: A Fast Algorithm for the Many
Patter/Many Object Match Problem”, Artificial Intelligence, 19,
pp. 17-37, 1982

» R.B. Doorenbos, “Production Matching for Large Learning
Systems”, Ph.D. Thesis, 1995

« Schmit, Struhmer and Stojanovic, “Blending Complex Event
Processing with the RETE algorithm”, in Proceedings of iCEP,
2008

* http://en.wikipedia.org/wiki/Rete_algorithm

* http://en.wikipedia.org/wiki/Complex_event_

processing

L. Rossi LCP - Rule-based systems 31/31

http://en.wikipedia.org/wiki/Rete_algorithm
http://en.wikipedia.org/wiki/Complex_event_processing
http://en.wikipedia.org/wiki/Complex_event_processing

	Rule-based systems
	Pattern Matching: RETE algorithm
	Rete00 Examples
	Conflict resolution and Execution

