Introduction to

a Google OR-Tools

(\ Google OR-Tools

Universita di Camerino

1336

PROS Lab Members

LY

PROS Lab

pros.unicam.it

Flavio Corradini Andrea Polini Barbara Re - Lorenzo Rossi Marco Piangerelli
Francesco Tiezzt Andrea Morichetta Fabrizio Fornari
i Comi I e POSTDOCTORAL RESEARCHER POSTDOCTORAL RESEARCHER
ASSOCIATE PROFESSOR RESEARCH FELLOW

POSTDOCTORAL RESEARCHER

Morena Barboni

Vincenzo Nucci

Ahmad Ronaghikhameneh
Umair Qureshi

£y

>

Caterina Luciani

Arianna Fedeli

Ivan C . Sara Pettinari
PHD STUDENT PHD STUDENT van (ompagnucct PHD STUDENT

PHD STUDENT
PHD STUDENT

PROS
PROcesses and
Services Lab

lvan Compagnucci Aﬁ'l ‘P o
Pdg . @@ pros@unicam.it

* Ph.D. student at UNICAM

« PROS Lab Member P:FEOI% L,.a..b http://pros.unicam.i

Interests Ivan Compagnucci

+ Business Process Management it

« BPMN

« BP & loT modeling and enactment

3 https://www.linkedin.com/in/
ivan-compagnucci/

M ivan.compagnucci@studenti.unicam.it

Research Topics

Internet of Things Business Process
Network of interconnected devices A set of activities, tasks or actions to carry
that collect and exchange dat.a to monitor, out a specific organizational goal such as
control or transfer relevant information a service or a product

so as to be able to perform consequent
intelligent actions

Business Process
Meet
Internet of Things

« Design and monitoring of the smart
environment for a better execution, safety
and less complexity

- Bridging the gap between the high level of the
Business Process and the low level of the loT
technologies

« Programming of "dependencies between
independent devices” in a process-oriented
vision

Process-Oriented Modelling Notations

Universita di Camerino

for Internet of Things

Universi d amerino Ivan Compagnucci
1336

1336

Findings

ivan.compagnucci@unicam.it

|
PROS Lab

pros unicamit

Computer Science Division, Science and Technology School, University of Camerino

BUSINESS PROCESS MEET INTERNET OF THINGS

The Internet of Things term Internet of Things Business Process The Business Process Manage-

refers to the inter-networking of ment is a well-established disci-
physical objects embedded with Q pline that deals with the analy-
electronics hardware, software, ['/ '—\,:;) sis, design, implementation, ex-
sensors, actuators, and network ecution, monitoring, and evolu-
connectivity. tion of business processes.

There isn’t a standard de facto for modeling smart
scenarios in a process- oriented way. Existing solutions
(86%) mainly use BPMN or an extension of it

SLR Research Questions

® RQI. Which are the relevant modelling
perspectives to consider when modelling
IoT-Aware business processes?

RQ2. What are the IoT requirements
supported by notations used to model
ToT-Aware business processes?

* RQ3. Which are the modelling nota-
tions proposed and adopted to model
ToT-Aware business processes?

\
TRENDS ON THE USAGE OF BPMN 2.0 STANDARD NOTATION
Sequence Fow 1 I —— 100% ;%\\ There isn’t a standard de facto for

modeling smart scenarios in a process-
oriented way. Existing solutions mainly

use BPMN oran extension of t. However, there is no a well-established and mature
86% 2 earsion approach that fully meet the requirements to
Foweven here s o wellstblished represent an loT scenario.

the requirements to represent an IoT
scenario.

8,29%
Start None Event 3] 50,32%
Tasks N 74,15%
Exclusive Gateway 5 - E— 59,46%
Expanded Pool 6 57,57%
Lane 7 I 52,88%
Message Flow s IS 32,23%
Paralll Gateway 9 IR 28,63%
Start Message Event 10 I 23,41%

Frequency Distribution of BPMN Elements

w2 9
o
00 4 s
N s o
o0 Start Eveat Expands — 64
e o 05 3 Intermediate Throw Message Event | Intcrmediate Catch Message Eveat | 0.59
3 30 o sput 0359
b3 3 Expanded Pool Lane 05s
5 oo = B0 Sequence Flow End Event 035
M 3 Exclasive Gateway Task 5
* 00w Mesage How Intermediste Cateh Message Event | 0.53
Expanded Pool Message Flow 052
oo 5006 Expanded Sub.Process 050
Intermodiate Throw Signal Event_| _Intermediate alErent_| 050
000
soo% o o5
D 5005 054
¥ o y, 031
o00% o o % o088 oo 000 00T 86060600
0123 45 67 89 WNRL MY B 12345678 INUDBUBUIEONNRBUBBN BB Comversation [
Haming Distance Value Practical Complxty Vale Collapsed Pool 054
Converstion Colapsed Pool 054
-Process -aChoreography -o-Conversation o Process -8 Choreograpty o Canerston

k Hamming Distance of BPMN Elements Practical Complexity of BPMN Elements BPMN Elements Pairs Correlation eee co n st ra i n t p rog ra m m i ng ca n i m p rove I OT syste m S?

ystematic Literature Review. BPM Workshop,

[1] L Compagnucci, E. Corradini, E. Fornari, A. Polini, B. Re and E Tiezzi. Modelling Notations for loT-Aware Business Process
Vol. 397, 108-121, 2020.

[2] 1 Compagnucci, E. Corradini, E. Fornari, and B. Re. Trends on the Usage of BPMN 2.0 from Publicly Available Repositories. In: Perspectives in Business Informatics Research,
Vol. 430, 84-99, 2021

Constraint Programming

Constraint programming is a powerful paradigm for solving combinatorial
search problems that draws on a wide range of techniques from artificial
intelligence (Al), operations research, algorithms, and graph theory.

The basic idea in constraint programming is that the user states the
constraints, and a general-purpose “constraint solver” is used to solve them.

Sudoku

- Rules for inserting numbers in the table

CPU’s Job Scheduling

Constraints on determing which process should be
executed

Gaming: Procedural Dungeon Simulation
Procedural dungeon generation
in an open world/universe context

-y
¢ SHL TR

What is OR Tools?

OR-Tools is an open source software suite for optimization, for solve
problems in vehicle routing, network flows, integer and linear
programming, and constraint programming.

\ Google OR-Tools

.

What is OR Tools? - Examples

* Vehicle routing: Find optimal routes for vehicle fleets that pick up and deliver

packages given constraints (e.g., "this truck can't hold more than 20,000 pounds" or
"all deliveries must be made within a two-hour window").

* Scheduling: Find the optimal schedule for a complex set of tasks, some of which

need to be performed before others, on a fixed set of machines, or other
resources.

Bin packing: Pack as many objects of various sizes as possible into a fixed number
of bins with maximum capacities.

In most cases, problems like these have a vast number of possible solutions. OR-Tools

uses state-of-the-art algorithms to narrow down the search set, in order to find an
optimal (or close to optimal) solution.

OR Tools: Identify the type of Solvers

There are many different types of optimization problems in the world. For each
type of problem, there are different approaches and algorithms for finding an
optimal solution. Before you can start writing a program to solve an optimization
problem, you need to identify what type of problem you are dealing with, and
then choose an appropriate solver — an algorithm for finding an optimal solution.

These are the types of problems that OR-Tools solves:
* Linear optimization

* Mixed-Integer optimization

* Constraint optimization

* Network flows/ Routing

* Assignment

* Scheduling

OR Tools: Solvers

OR-Tools include solvers for:

Constraint Programming: A set of techniques for finding feasible solutions to
a problem expressed as constraints (e.g., a room can't be used for two events
simultaneously, or the distance to the crops must be less than the length of the
hose, or no more than five TV shows can be recorded at once).

Linear and Mixed-Integer Programming: The Glop linear optimizer finds the
optimal value of a linear objective function, given a set of linear inequalities as
constraints (e.g., assigning people to jobs, or finding the best allocation of a set of
resources while minimizing cost

Scheduling: Scheduling problems involve assigning resources to perform a set
of tasks at specific times. An important example is the job shop problem, in which
multiple jobs are processed on several machines. Each job consists of a sequence of
tasks, which must be performed in a given order, and each task must be processed
on a specific machine. The problem is to assign a schedule so that all jobs are
completed in as short an interval of time as possible.

OR Tools: Solvers

OR-Tools include solvers for:

* Network Flow: Many optimization problems can be represented by a directed graph
consisting of nodes and directed arcs between them. For example, transportation
problems, in which goods are shipped across a railway network, can be represented by a
graph in which the arcs are rail lines and the nodes are distribution centers. The problem is
to assign the amount of goods to be shipped across each arc so that the total quantity
being transported is as large as possible.

* Assignment: Assignment problems involve assigning a group of agents (say, workers or
machines) to a set of tasks, where there is a fixed cost for assighing each agent to a
specific task. The problem is to find the assignment with the least total cost.

OR-Tools Awards

OR-Tools won four gold medals in the 2021 MiniZinc Challenge, the
International Constraint Programming Competition

[1]
Category Bronze
Fixed SICStus Prolog
Free iZplus
Parallel iZplus/Choco 4
Open iZplus/Choco 4

Local Search

[1] https.//www.minizinc.org/challenge2021/challenge.html

OR Tools in practice

OR-Tools is written in C++, but you can also use it with Python, Java, or C#.

Which programming languages are you familiar with?

8 risposte

Java

— Considering your
skill, we will use
OR-Tools in Java

Python

C#

Javascript

OR Tools: Installation

Download the following resources:

* “Constraints”:

® You must have the Microsoft Visual C++ Redistributable for Visual Studio 2019.
https://visualstudio.microsoft.com/downloads/?q=Visual+C%2B%2B+Redistributable+for+Visual+Studio

® You must also have a Java JDK 64 bit, version 8.0 or later installed. https://java.com/en/download/help/download_options.html
* You must also have a Maven 64 bit installed. https://maven.apache.org/download.cqi

* Visual Studio Code 2022: As IDE.
* OR-Tools Binary Distribution:
1. Visit: https://developers.google.com/optimization/install

2. Select the distribution depending on your Operating System.
3. Unzip

https://maven.apache.org/download.cgi
https://developers.google.com/optimization/install

OR Tools: Installation

Testing the installation (Inside the unzipped folder):

You should be able to have this output:

Scanning for projects...

(default-cli) @ andalon |
Installing C:\OR-Tools\ortools-win32-x86-64-9.3.10497.jar to C:\Users\User\.m2\rep

| B e o e | e B o b e | o i o |

[

] Total time: ©0.864 s
] Finished at: 2022-04-14T16:07:39+02:00

Possible errors

Make sure you:

Defined environmental variables (PATH):
* For DK, Maven, cmd view, ...

* Microsoft Visual C++ Redistributable is up to date!

Install MinGW (If “make” command doesn’t work)

OR Tools: What is an optimization problem?

The goal of optimization is to find the best solution to a problem out of a large set of possible
solutions. (Sometimes you'll be satisfied with finding any feasible solution; OR-Tools can do that
as well.)

A typical optimization problem:

Here's a typical optimization problem. Suppose that a shipping company delivers
packages to its customers using a fleet of trucks. Every day, the company must
assign packages to trucks, and then choose a route for each truck to deliver its
packages. Each possible assignment of packages and routes has a cost, based on the
total travel distance for the trucks, and possibly other factors as well. The problem is to
choose the assignments of packages and routes that has the least cost.

@ OR Tools: What is an optimization problem?

Like all optimization problems, this problem has the following 2 elements:

® The Objective: The quantity you want to optimize. Here, the objective is to minimize cost. To set up an
optimization problem, you need to define a function that calculates the value of the objective for
any possible solution. This is called the objective function. In the preceding example, the objective
function would calculate the total cost of any assignment of packages and routes.

An optimal solution is one for which the value of the objective function is the best.

® The Constraints: Restrictions on the set of possible solutions, based on the specific requirements of
the problem. For example, if the shipping company can't assign packages above a given weight to trucks,
this would impose a constraint on the solutions.

A feasible solution is one that satisfies all the given constraints for the problem, without necessarily being optimal.

Solving a linear optimization problem in Java

A linear optimization example:

- Maximize 3x + y subject to the following constraints:

- Both the objective function and the constraints are given
by linear expressions, which makes this a linear problem.

Main 5 steps to solve the problem with OR-Tools:

Import the required libraries;
Declare the Solver;

Create variables;

Define the constraints;
Define the objective function;

OUhEWN =

Invoke the Solver and display results.

IA

IA

Solving a linear optimization problem in Java

Import the required libraries:

import com.google.ortools.Loader;

import com.google.ortools.linearsolver.MPConstraint;
import com.google.ortools.linearsolver.MPObjective;
import com.google.ortools.linearsolver.MPSolver;
import com.google.ortools.linearsolver.MPVariable;

Declare the Solver:

// Create the linear solver with the GLOP backend.
MPSolver solver = MPSolver.createSolver("GLOP");

Create Variables

// Create the variables x and y.

MPVariable x = solver.makeNumVar(©.0, 1.6, "
MPVariable y = solver.makeNumVar(06.0, 2.0,

System.out.println(“Number of variables

Xy S
)

" + solver.numVariables());

MPSolver is a wrapper for solving any
linear programming or mixed integer
programming problems.

1336

Solving a linear optimization problem in Java

Define the Constraints

// Create a linear constraint,

MPConstraint ct = solver.makeConstraint(6.0,
ct.setCoefficient(x, 1);
ct.setCoefficient(y, 1);

System.out.println(“Number of constraints = "

+ solver.numConstraints());

Define the Objective of the function

// Create the objective function, 3 * x + y.
MPObjective objective = solver.objective();
objective.setCoefficient(x, 3);
objective.setCoefficient(y, 1);
objective.setMaximization();

Invoke the solver and display the results

solver.solve();
System.out.println(“Solution:");

System.out.println(“Objective value = "

System.out.println("x
System.out.println("y

+ objective.value());
" + x.solutionValue());
" + y.solutionValue());

The first two constraints:

e O0<x<1;

« O<y<2.

Are already set by the definitions
of the variables. The following
code defines the constraint:

« X+y<2

The method setCoefficient sets
the coefficients of x and y in the
expression for the constraint.

The method setMaximization
declares this to be a
maximization problem

Solving a linear optimization problem in Java

You can run the program as follow:

1. Open a command window at the top level of the directory where you installed OR-Tools, and enter:

$ make build SOURCE=relative/path/to/ /my_program.java

2. Then run the program:

S make run SOURCE=relative/path/to/ #my_program.java

Number of variables = 2

3. Display reSUIts: Number of constraints =1

Solution:

] Total time: 4.619 s
] Finished at: 2022-04-17T17:31:04+02:00

A linear optimization example:

Another linear optimization problem in Java

X+2y s 14

Maximize 3x + 4y subject to the following constraints: 3x -y > 0

Both the objective function and the constraints are given

by linear expressions, which makes this a linear problem.

Maximize 3x + 4y

IA
N

X=y

The constraints define the feasible region, which is
the triangle shown below, including its interior.

Another linear optimization problem in Java

Main 6 steps to solve the problem with OR-Tools:

ourhWh =

Import the required libraries;
Declare the Solver;

Define variables;

Define the constraints;
Define the objective function;

Invoke the Solver and display results.

1336

Another linear optimization problem in Java

Import the required libraries:

import com.google.ortools.lLoader;

import com.google.ortools.linearsolver.MPConstraint;
import com.google.ortools.linearsolver.MPObjective;
import com.google.ortools.linearsolver.MPSolver;
import com.google.ortools.linearsolver.MPVariable;

Declare the Solver:

// Create the linear solver with the GLOP backend.

MPSolver solver = MPSolver.createSolver("“GLOP"); Varlables X and y Whose Values are in

the range from 0 to infinity.
Create Variables

double infinity = java.lang.Double.POSITIVE_INFINITY;
// x and y are continuous non-negative variables.
MPVariable x = solver.makeNumVar(6.0, infinity, "x");

MPVariable y = solver.makeNumVar(6.06, infinity, "y");
System.out.println("Number of variables = " + solver.numVariables());

Another linear optimization problem in Java

Define the Constraints

/] x + 2%y <= 14.
MPConstraint c® = solver.makeConstraint(-infinity, 14.86, "c0");
c0.setCoefficient(x, 1);

cO.setCoefficient(y, 2); Constraints.
/] 3%x -y >= 8. * CO: x+2y <= 14,

MPConstraint c1 = solver.makeConstraint(0.0, infinity, "c1"); . _
c1.setCoefficient(x, 3); - CT: 3X-y >= 0.

c1.setCoefficient(y, -1); e (C2: X_y <=2,

/] x -y <= 2.

MPConstraint c2 = solver.makeConstraint(-infinity, 2.0, "c2");
c2.setCoefficient(x, 1);

c2.setCoefficient(y, -1);

System.out.println("Number of constraints = " + solver.numConstraints());

Define the Objective of the function

// Maximize 3 * x + 4 * y. The following code defines the
MPObjective objective = solver.objective(); objective function, 3x + 4y, and
objective.setCoefficient(x, 3); specifies that this is a maximization
objective.setCoefficient(y, 4); problem
objective.setMaximization();

Solving a linear optimization problem in Java

4. Invoke the solver

final MPSolver.ResultStatus resultStatus = solver.solve();

5. Display results

if (resultStatus == MPSolver.ResultStatus.OPTIMAL) {
System.out.println("Solution:");
System.out.println("Objective value = " + objective.value());
System.out.println("x = " + x.solutionValue());

System.out.println("y = " + y.solutionValue());
else {
System.err.println("The problem does not have an optimal solution!");

¥ Solving a linear optimization problem in Java

3x-y=0

.. 3Xx+4y =34

Solution = 34

(6, 4)

~
~

The dashed green line is defined by
setting the objective function equal to
its optimal value of 34.

Any line whose equation has the form 3x +
4y = cis parallel to the dashed line, and 34
is the largest value of ¢ for which the line
intersects the feasible region

Number of variables = 2
Number of constraints = 3
Solution:

X = 6.0
y = 4.0
Optimal objective value

Mixed-Integer optimization problem in Java

Linear optimization problems that require some of the variables to be integers are
called Mixed Integer Programs (MIPs). These variables can arise in a couple of ways:

* Integer Variables: that represent numbers of items, such as cars or television
sets, and the problem is to decide how many of each item to manufacture in
order to maximize profit. Typically, such problems can be set up as standard linear
optimization problems, with the added requirement that the variables must be

integers.

Workers Tasks

Boolean variables: that represent decisions with 0-1
values. As an example, consider a problem that involves

assigning workers to tasks. To set up this type of problem, you
can define Boolean variables x;; that equal 1 if worker i is

assigned to task j, and 0 otherwise.

Mixed-Integer optimization problem in Java

A Mixed-Integer optimization example: x+7y s 173

- Maximize x + 10y subject to the following constraints: X < 35
X z 0
[0 B y Z O

W X,y integers
N L] L] L] L]

= ’ . . . Since the constraints are linear,
this is just a linear optimization
problem in which the solutions
S o . . . " are required to be integers!

Mixed-Integer optimization problem in Java

Main 5 steps to solve the problem with OR-Tools:

ourhWh =

Import the linear solver wrapper;
Declare the MIP Solver;

Define variables;

Define the constraints;

Define the objective;

Invoke the MIP Solver and display results.

1. Import the required libraries:

import com.google.ortools.Loader;

import com.google.ortools.linearsolver.MPConstraint;
import com.google.ortools.linearsolver.MPObjective;
import com.google.ortools.linearsolver.MPSolver;
import com.google.ortools.linearsolver.MPVariable;

2. Declare the MIP Solver:

// Create the linear solver with the SCIP backend.
MPSolver solver = MPSolver.createSolver("SCIP");
if (solver == null) {
System.out.println("Could not create solver SCIP");
return;

}
3. Create Variables

double infinity = java.lang.Double.POSITIVE_INFINITY;
// x and y are integer non-negative variables.
MPVariable x = solver.makeIntVar(0.0, infinity,
MPVariable y = solver.makeIntVar(0.0, infinity,

System.out.println(“Number of variables = " + solver.numVariables());

© Mixed-Integer optimization problem in Java

MakelntVar method

allow to create variables
x and y that take non-
negative integer values

1336

4,

Mixed-Integer optimization problem in Java

Define the Constraints

[/ x +7 *y <= 17.5.

MPConstraint c@ = solver.makeConstraint(-infinity, 17.5, "c@");
c0.setCoefficient(x, 1);

c0.setCoefficient(y, 7);

I % 3= 8.5,

MPConstraint c1 = solver.makeConstraint(-infinity, 3.5, "c1");
c1.setCoefficient(x, 1);

c1.setCoefficient(y, 0);

System.out.println("“Number of constraints = " + solver.numConstraints());

Define the Objective of the function

// Maximize x + 10 * y.
MPObjective objective = solver.objective();

objective.setCoefficient(x, 1);
objective.setCoefficient(y, 10);
objective.setMaximization();

Constraints:
 CO:x+7y<=17.5
e C1:x<=3.5.

The following code defines the
objective function, x + 10y, and
specifies that this is a maximization
problem

1336

Mixed-Integer optimization problem in Java

4. Invoke the solver

final MPSolver.ResultStatus resultStatus = solver.solve();

5. Display results

if (resultStatus == MPSolver.ResultStatus.OPTIMAL) {

System.
System.
System.
System.
else {
System.

out.println("Solution:");

out.println("Objective value = " + objective.value());
out.println("x = " + x.solutionValue());
out.println("y = " + y.solutionValue());

.println("The problem does not have an optimal solution!")

Mixed-Integer optimization problem in Java

X+7y=17.5 Integer opt.
solution = 23
B (0,2) o ¢ . W
(3,2)
i . . = °

The optimal value of the
objective function is 23,
which occurs at the point
X=3,y=2.

Number of variables = 2
Number of constraints = 2
Solution:

Objective value

Comparing Linear and Integer Optimization

Let's compare the solution to the integer optimization problem, with the solution to the
corresponding linear optimization problem, in which integer constraints are removed.

1.

3.

[s2]

Replace the MIP Solver with LP Solver; (SCIP -> GLOP)
2. Replace Integer Variables with Continuous Variables; (makelntVar -> makeNumVar)

Check differences!

Linear opt.
solution = 25

(0, 2.5)

(0,2)

X +7y =175 Integer opt.
solution = 23
L] L J ® ®

3, 2)

N —He
w —e

Objective value = 23

MIP: [

y =2

Results:
esults Objective value = 25.000000

LP- X = 0.000000

y = 2.500000

The integer solution is not close to the linear
solution. The solutions to a linear optimization
problem and the corresponding integer
optimization problems can be far apart.
Because of this, the two types of problems
require different methods for their solution.

Next times..

OR-Tools: Constraints Programming examples:
- Hello world example
- SAT solver for Boolean Satisfiability Problem

OR-Tools: Routing examples:
- Simple Vehicle Routing Problem example
- Vehicle Routing Problem with capacity constraints

