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Abstract Boosting is an approach to machine learning based on the idea of creating
a highly accurate prediction rule by combining many relatively weak and inaccu-
rate rules. The AdaBoost algorithm of Freund and Schapire was the first practical
boosting algorithm, and remains one of the most widely used and studied, with
applications in numerous fields. This chapter aims to review some of the many per-
spectives and analyses of AdaBoost that have been applied to explain or understand
it as a learning method, with comparisons of both the strengths and weaknesses of
the various approaches.

1 Introduction

Boosting is an approach to machine learning based on the idea of creating a highly
accurate prediction rule by combining many relatively weak and inaccurate rules.
The AdaBoost algorithm of Freund and Schapire [10] was the first practical boosting
algorithm, and remains one of the most widely used and studied, with applications
in numerous fields. Over the years, a great variety of attempts have been made to
“explain” AdaBoost as a learning algorithm, that is, to understand why it works,
how it works, and when it works (or fails). It is by understanding the nature of
learning at its foundation — both generally and with regard to particular algorithms
and phenomena — that the field is able to move forward. Indeed, this has been the
lesson of Vapnik’s life work.

This chapter aims to review some of the numerous perspectives and analyses of
AdaBoost that have been applied to explain or understand it as a learning method,
with comparisons of both the strengths and weaknesses of the various approaches.
For brevity, the presentation is high level with few technical details. A much more
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Given: (x1,y1), . . . ,(xm,ym) where xi ∈X , yi ∈ {−1,+1}.
Initialize: D1(i) = 1/m for i = 1, . . . ,m.
For t = 1, . . . ,T :
• Train weak learner using distribution Dt .
• Get weak hypothesis ht : X →{−1,+1}.
• Aim: select ht with low weighted error:

εt = Pri∼Dt [ht(xi) 6= yi] .

• Choose αt = 1
2 ln
(

1− εt

εt

)
.

• Update, for i = 1, . . . ,m:

Dt+1(i) =
Dt(i)exp(−αt yiht(xi))

Zt

where Zt is a normalization factor (chosen so that Dt+1 will be a distribution).

Output the final hypothesis:

H(x) = sign

(
T

∑
t=1

αt ht(x)

)
.

Fig. 1 The boosting algorithm AdaBoost.

in-depth exposition of most of the topics of this chapter, including more complete
references to the relevant literature, can be found in the recent book by Schapire and
Freund [30].

Pseudocode for AdaBoost is shown in Figure 1. Here we are given m labeled
training examples (x1,y1), . . . ,(xm,ym) where the xi’s are in some domain X , and
the labels yi ∈ {−1,+1}. On each round t = 1, . . . ,T , a distribution Dt is computed
as in the figure over the m training examples, and a given weak learner or weak
learning algorithm is applied to find a weak hypothesis ht : X →{−1,+1}, where
the aim of the weak learner is to find a weak hypothesis with low weighted error εt
relative to Dt . The final or combined hypothesis H computes the sign of a weighted
combination of weak hypotheses

F(x) =
T

∑
t=1

αtht(x). (1)

This is equivalent to saying that H is computed as a weighted majority vote of the
weak hypotheses ht where each is assigned weight αt . (In this chapter, we use the
terms “hypothesis” and “classifier” interchangeably.)

2 Direct Application of VC Theory

We begin by considering how the general theory of Vapnik and Chervonenkis can
be applied directly to AdaBoost.
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Intuitively, for a learned classifier to be effective and accurate in its predictions,
it should meet three conditions: (1) it should have been trained on “enough” train-
ing examples; (2) it should provide a good fit to those training examples (usually
meaning that it should have low training error); and (3) it should be “simple.” This
last condition, our expectation that simpler rules are better, is often referred to as
Occam’s razor.

In formalizing these conditions, Vapnik and Chervonenkis [34, 35] established a
foundation for understanding the fundamental nature of learning, laying the ground-
work for the design of effective and principled learning algorithms. Specifically,
they derived upper bounds on the generalization error of a classifier that could be
stated in terms of the three conditions above, and along the way, provided work-
able definitions (such as the VC-dimension) of the slippery and mysterious notion
of simplicity.

To understand AdaBoost, the very general and encompassing VC theory is the
most sensible starting point. All analyses of learning methods depend in some way
on assumptions, since otherwise, learning is quite impossible. From the very begin-
ning, much of the work studying boosting has been based on the assumption that
each of the weak hypotheses has accuracy just a little bit better than random guess-
ing; for two-class problems, this means they should each have error below 1/2, that
is, each εt should be at most 1/2− γ for some γ > 0. This assumption, called the
weak learning condition, is intrinsic to the mathematical definition of a boosting
algorithm which, given this assumption and sufficient data, can provably produce a
final hypothesis with arbitrarily small generalization error.

Given the weak learning condition, it is possible to prove that the training er-
ror of AdaBoost’s final hypothesis decreases to zero very rapidly; in fact, in just
O(logm) rounds (ignoring all other parameters of the problem), the final hypothesis
will perfectly fit the training set [10]. Furthermore, we can measure the complexity
(that is, lack of simplicity) of the final hypothesis using the VC-dimension which
can be computed using combinatorial arguments [2, 10]. Having analyzed both the
complexity and training fit of the final hypothesis, one can immediately apply the
VC theory to obtain a bound on its generalization error.

Such an analysis predicts the kind of behavior depicted on the left of Figure 2
which shows the error (both training and test) of the final hypothesis as a function
of the number of rounds of boosting. As noted above, we expect training error to
drop very quickly, but at the same time, the VC-dimension of the final hypothesis
is increasing roughly linearly with the number of rounds T . Thus, with improved
fit to the training set, the test error drops at first, but then rises again as a result of
the final hypothesis becoming overly complex. This is classic overfitting behavior.
Indeed, overfitting can happen with AdaBoost as seen on the right side of the figure
which shows training and test error on an actual benchmark dataset. However, as we
will see shortly, AdaBoost often does not overfit, apparently in direct contradiction
of what is predicted by VC theory.

Summarizing this first approach to understanding AdaBoost, a direct application
of VC theory shows that AdaBoost can work if provided with enough data and
simple weak classifiers which satisfy the weak learning condition, and if run for
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Fig. 2 Left: A plot of the theoretical training and test percent errors for AdaBoost, as predicted by
the arguments of Section 2. Right: The training and test percent error rates obtained using boost-
ing on the Cleveland heart-disease benchmark dataset. (Reprinted from [30] with permission of
MIT Press.)

enough but not too many rounds. The theory captures the cases in which AdaBoost
does overfit, but also predicts (incorrectly) that AdaBoost will always overfit.

Like all of the approaches to be discussed in this chapter, the numerical bounds
on generalization error that can be obtained using this technique are horrendously
loose.

3 The Margins Explanation

Another actual typical run on a different benchmark dataset is shown on the left
of Figure 3. In this case, boosting was used in combination with the decision-tree
learning algorithm C4.5 [26] as the weak learner. A single decision tree produced
by C4.5 on this dataset has a test error rate of 13.8%. In this example, boosting very
quickly drives down the training error; in fact, after only five rounds, the training
error is zero so that all training examples are correctly classified. (Note that there is
no reason why AdaBoost cannot proceed beyond this point.)

The test performance of boosting on this dataset is extremely good, far better
than a single decision tree. And surprisingly, unlike the earlier example, the test
error on this dataset never increases, even after 1000 trees have been combined, by
which point, the combined classifier involves more than two million decision nodes.
Even after the training error hits zero, the test error continues to drop, from 8.4%
on round 5 down to 3.1% on round 1000. This pronounced lack of overfitting seems
to flatly contradict the intuition and theory discussed in Section 2 which says that
simpler is better. Surely, a combination of five trees is much, much simpler than a
combination of 1000 trees (about 200 times simpler, in terms of raw size), and both
perform equally well on the training set (perfectly, in fact). So how can it be that
the far larger and more complex combined classifier performs so much better on the
test set?



Explaining AdaBoost 5

10 100 1000
0

5

10

15

20

rounds of boosting

p
e
rc

e
n
t 
e
rr

o
r

-1 -0.5 0.5 1

0.5

1.0

c
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n

margin

Fig. 3 Left: The training and test percent error rates obtained using boosting on an OCR dataset
with C4.5 as the base learner. The top and bottom curves are test and training error, respectively.
The top horizontal line shows the test error rate using just C4.5. The bottom line shows the final
test error rate of AdaBoost after 1000 rounds. Right: The margin distribution graph for this same
case showing the cumulative distribution of margins of the training instances after 5, 100 and 1000
iterations, indicated by short-dashed, long-dashed (mostly hidden) and solid curves, respectively.
(Both figures are reprinted from [31] with permission of the Institute of Mathematical Statistics.)

Such resistance to overfitting is typical of boosting, although, as we saw earlier,
boosting certainly can overfit. This resistance is one of the properties that make it
such an attractive learning algorithm. But how can we understand this behavior?

The margins explanation of Schapire et al. [31] was proposed as a way out of
this seeming paradox. Briefly, the main idea is the following. The description above
of AdaBoost’s performance on the training set only took into account the training
error, which is zero already after only five rounds. However, training error only tells
part of the story in that it only reports the number of examples that are correctly
or incorrectly classified. Instead, to understand AdaBoost, we also need to consider
how confident are the predictions being made by the algorithm. According to this
explanation, although the training error — that is, whether or not the predictions
are correct — is not changing after round 5, the confidence in those predictions is
increasing dramatically with additional rounds of boosting. And it is this increase in
confidence which accounts for the better generalization performance.

To measure confidence, we use a quantity called the margin. Recall that the com-
bined classifier H is simply a weighted majority vote — that is, the result of a
small-scale “election” — of the predictions of the weak classifiers. In a real-world
election, confidence in the outcome is measured by the margin of victory, the differ-
ence between the fraction of votes received by the winner and the fraction of votes
received by the loser. In the same way, we can define margin in our setting as the
difference between the weighted fraction of the weak classifiers predicting the cor-
rect label and the weighted fraction predicting the incorrect label. When this vote
is very close, so that the predicted label H(x) is based on a narrow majority, the
margin will be small in magnitude and, intuitively, we will have little confidence in
the prediction. On the other hand, when the prediction H(x) is based on a clear and
substantial majority of the base classifiers, the margin will be correspondingly large
lending greater confidence in the predicted label. Thus, the magnitude of the margin
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is a reasonable measure of confidence. Furthermore, the margin will be positive if
and only if the overall prediction H(x) is correct.

We can visualize the effect AdaBoost has on the margins of the training examples
by plotting their distribution. In particular, we can create a plot showing, for each
θ ∈ [−1,+1], the fraction of training examples with margin at most θ . For such a
cumulative distribution curve, the bulk of the distribution lies where the curve rises
the most steeply. Figure 3, on the right, shows such a margin distribution graph
for the same dataset as above, showing the margin distribution after 5, 100 and
1000 rounds of boosting. Whereas nothing at all is happening to the training error,
these curves expose dramatic changes happening on the margin distribution. For
instance, after five rounds, although the training error is zero (so that no examples
have negative margin), a rather substantial fraction of the training examples (7.7%)
have margin below 0.5. By round 100, all of these examples have been swept to the
right so that not a single example has margin below 0.5, and nearly all have margin
above 0.6.

Thus, this example is indicative of the powerful effect AdaBoost has on the mar-
gins, aggressively pushing up those examples with small or negative margin. More-
over, comparing the two sides of Figure 3, we see that this overall increase in the
margins appears to be correlated with better performance on the test set.

AdaBoost can be analyzed theoretically along exactly these lines. It is possible
to prove first a bound on the generalization error of AdaBoost — or any other voting
method — that depends only on the margins of the training examples, and not on the
number of rounds of boosting. Such a bound predicts that AdaBoost will not overfit
regardless of how long it is run, provided that large margins can be achieved (and
provided, of course, that the weak classifiers are not too complex relative to the size
of the training set).

The second part of such an analysis is to prove that, as observed empirically in
Figure 3, AdaBoost generally tends to increase the margins of all training examples,
and moreover, the higher the accuracy of the weak hypotheses, the larger will be the
margins.

All this suggests that perhaps a more effective learning algorithm could be de-
signed by explicitly attempting to maximize the margins. This was attempted by
Breiman [4] (among others) who created an algorithm called arc-gv for maximiz-
ing the smallest margin of any training example. Although this algorithm did in-
deed produce larger margins, its test performance turned out to be slightly worse
than AdaBoost, apparently contradicting the margins theory. In a follow-up study,
Reyzin and Schapire [28] suggested two possible explanations. First, more aggres-
sive margin maximization seems to produce more complex weak hypotheses which
tends to raise the potential for overfitting, confounding the experiments. And sec-
ond, in some cases, arc-gv produces a higher minimum margin, but a distribution of
margins that is lower overall.

In summary, according to the margins explanation, AdaBoost will succeed with-
out overfitting if the weak-hypothesis accuracies are substantially better than ran-
dom (since this will lead to large margins), and if provided with enough data relative
to the complexity of the weak hypotheses. This is really the only known theory that



Explaining AdaBoost 7

explains the cases in which overfitting is not observed. On the other hand, attempted
extensions of AdaBoost based on direct maximization of margins have not been en-
tirely successful, though work in this area is ongoing (see, for instance, [22, 36]).

4 Loss Minimization

Many, perhaps even most, learning and statistical methods that are in common use
can be viewed as procedures for minimizing a loss function (also called a cost or
objective function) that in some way measures how well a model fits the observed
data. A classic example is least-squares regression in which a sum of squared errors
is minimized. AdaBoost, though not originally designed for this purpose, also turns
out to minimize a particular loss function. Viewing the algorithm in this light can
be helpful for a number of reasons. First, such an understanding can help to clarify
the goal of the algorithm and can be useful in proving convergence properties. And
second, by decoupling the algorithm from its objective, we may be able to derive
better or faster algorithms for the same objective, or alternatively, we might be able
to generalize AdaBoost for new challenges.

AdaBoost can be understood as a procedure for greedily minimizing what has
come to be called the exponential loss, namely,

1
m

m

∑
i=1

exp(−yiF(xi))

where F(x) is as given in Eq. (1). In other words, it can be shown that the choices
of αt and ht on each round happen to be the same as would be chosen so as to cause
the greatest decrease in this loss. This connection was first observed by Breiman [4]
and later expanded upon by others [7, 11, 23, 25, 27, 32].

Why does this loss make sense? Intuitively, minimizing exponential loss strongly
favors the choice of a function F for which the sign of F(xi) is likely to agree with
the correct label yi; since the final hypothesis H is computed as the sign of F , this
is exactly the behavior we seek in attempting to minimize the number of mistaken
classifications. Another argument that is sometimes made is that the real goal of
minimizing classification errors requires the optimization of an objective that is not
continuous, differentiable or easily minimized, but which can be approximated by a
smooth and convex “surrogate” objective function such as the exponential loss. The
exponential loss is also related to the loss used for logistic regression [11].

As a procedure for minimizing this loss, AdaBoost can be viewed as a form of
coordinate descent (in which each step is made greedily along one of the coordinate
directions), as noted by Breiman [4]. Alternatively, AdaBoost can be viewed as a
form of functional gradient descent, as observed by Mason et al. [23] and Fried-
man [12]. This understanding has led to the immediate generalization of boosting to
a wide range of other learning problems and loss functions, such as regression.
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From this perspective, it might seem tempting to conclude that AdaBoost’s ef-
fectiveness as a learning algorithm is derived from the choice of loss function that
it apparently aims to minimize, in other words, that AdaBoost works only because
it minimizes exponential loss. If this were true, then it would follow plausibly that
a still better algorithm could be designed using more powerful and sophisticated
approaches to optimization than AdaBoost’s comparatively meek approach.

However, it is critical to keep in mind that minimization of exponential loss by
itself is not sufficient to guarantee low generalization error. On the contrary, it is
very much possible to minimize the exponential loss (using a procedure other than
AdaBoost), while suffering quite substantial generalization error (relative, say, to
AdaBoost).

To demonstrate this point, consider the following experiment from Schapire and
Freund [30], which is similar in spirit to the work of Mease and Wyner [24, 37].
Data for this experiment was generated synthetically with each instance x a 10,000-
dimensional {−1,+1}-valued vector, that is, a point in {−1,+1}10,000. Each of
the 1000 training and 10,000 test examples were generated uniformly at random
from this space. The label y associated with an instance x was defined to be the
majority vote of three designated coordinates of x. The weak hypotheses used were
associated with coordinates so that each was of the form h(x) = x j for all x, and for
some coordinate j. (The negatives of these were also included.)

Three different algorithms were tested. The first was ordinary AdaBoost using
an exhaustive weak learner that, on each round, finds the minimum weighted-error
weak hypothesis. We refer to this as exhaustive AdaBoost. The second algorithm
was gradient descent on the exponential loss function (which can be written in a
parametric form so that ordinary gradient descent can be applied). The third algo-
rithm was actually the same as AdaBoost except that the weak learner does not
actively search for the best weak hypothesis, but rather selects one uniformly at ran-
dom from the space of possible weak hypotheses; we refer to this method as random
AdaBoost.

All three algorithms are guaranteed to minimize the exponential loss, but that
does not mean that they will necessarily perform the same on actual data in terms
of classification accuracy. It is true that the exponential loss is convex, and therefore
can have no local minima. But it is possible, and even typical, for the minimum
either to be non-unique, or to not exist at all at any finite setting of the parameters.
Therefore, different algorithms for the same (convex) loss can yield very different
hypotheses.

The results of these experiments are shown in Table 1. Regarding speed (mea-
sured by number of rounds), the table shows that gradient descent is extremely fast
at minimizing exponential loss, while random AdaBoost is unbearably slow, though
eventually effective. Exhaustive AdaBoost is somewhere in between. As for accu-
racy, the table shows that both gradient descent and random AdaBoost performed
very poorly on this data with test errors never dropping significantly below 40%. In
contrast, exhaustive AdaBoost quickly achieved and maintained perfect test accu-
racy beginning after the third round.
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% test error [# rounds]
exp. loss exhaustive AdaBoost gradient descent random AdaBoost

10−10 0.0 [94] 40.7 [5] 44.0 [24,464]
10−20 0.0 [190] 40.8 [9] 41.6 [47,534]
10−40 0.0 [382] 40.8 [21] 40.9 [94,479]
10−100 0.0 [956] 40.8 [70] 40.3 [234,654]

Table 1 Results of the experiment described in Section 4. The numbers in brackets show the
number of rounds required for each algorithm to reach specified values of the exponential loss.
The unbracketed numbers show the percent test error achieved by each algorithm at the point in its
run at which the exponential loss first dropped below the specified values. All results are averaged
over ten random repetitions of the experiment. (Reprinted from [30] with permission of MIT
Press.)

Of course, this artificial example is not meant to show that exhaustive AdaBoost
is always a better algorithm than the other two methods. Rather, the point is that
AdaBoost’s strong performance as a classification algorithm cannot be credited —
at least not exclusively — to its effect on the exponential loss. If this were the case,
then any algorithm achieving equally low exponential loss should have equally low
generalization error. But this is far from what we see in this example where ex-
haustive AdaBoost’s very low exponential loss is matched by the competitors, but
their test errors are not even close. Clearly, some other factor beyond its exponen-
tial loss must be at work to explain exhaustive AdaBoost’s comparatively strong
performance.

So to summarize, minimization of exponential loss is a fundamental property
of AdaBoost, and one that opens the door for a range of practical generalizations of
the algorithm. However, it is important to keep in mind that this perspective is rather
limited in terms of what it can tell us about AdaBoost’s accuracy as a learning al-
gorithm. The example above demonstrates that any understanding of AdaBoost’s
generalization capabilities must in some way take into account the particular dy-
namics of the algorithm — not just the objective function, but what procedure is
actually being used to minimize it.

5 Regularization

Without question, AdaBoost minimizes exponential loss. And yet, as was just seen,
other algorithms for minimizing this same loss can perform far worse. If the choice
of loss function cannot explain how AdaBoost avoids the poor performance of these
other algorithms, then how does it do it?

In general, when minimizing a loss function, it has become quite popular and
standard to regularize, that is, to modify or constrain the optimization problem
in a way that attempts to avoid overfitting by limiting complexity or encouraging
smoothness. In our context, we have seen that AdaBoost constructs a linear combi-
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Fig. 4 The trajectories of the weight vectors computed on a benchmark dataset using only six pos-
sible weak hypotheses. Trajectories are plotted for `1-regularized exponential loss as the parameter
B varies (left), and for a variant of AdaBoost in which αt = α = 10−6 on every round (right). Each
figure includes one curve for each of the six weak hypotheses showing its associated weight as a
function of the total weight added. (Reprinted from [30] with permission of MIT Press.)

nation F of weak hypotheses (as in Eq. (1)), and does so in a way that minimizes
exponential loss over all such linear combinations. To regularize, we might instead
choose our objective to be the minimization of this same loss, but subject to the con-
straint that the weak-hypothesis weights appearing in F , when viewed collectively
as a vector, have `1-norm bounded by some pre-set parameter B > 0. There are many
other ways of regularizing (for instance, using a different norm), but this particular
form based on the `1-norm, sometimes called the “lasso,” has the especially favor-
able property that it seems to encourage sparsity, that is, a solution with relatively
few nonzero weights [33].

AdaBoost certainly does not explicitly regularize — there is nothing about the
algorithm that overtly limits the weights on the weak hypotheses. Nevertheless, is
it possible that it is somehow applying some kind of implicit form of regulariza-
tion? In fact, it turns out that a simple variant of AdaBoost, when stopped after any
number of rounds, can often be viewed as providing an approximate solution to `1-
regularized minimization of exponential loss. To see this, consider an experiment
in which we compute the solution to this regularized optimization problem for all
possible values of the pre-set bound B. As B varies, these weight vectors trace out
a path or trajectory, which can be plotted in the unrealistic but illustrative case that
the space of possible weak hypotheses is very small. This is shown on the left of
Figure 4 on benchmark data using just six possible weak hyptheses. Each curve cor-
responds to one of the six weak hypotheses and plots its weight at the regularized
solution as a function of B. Thus, the figure depicts the entire trajectory.

For comparison, consider a variant of AdaBoost in which αt , rather than being set
as in Figure 1, is chosen on each round to be equal to a fixed small constant α > 0.
As above, we can plot the trajectory of the weights on the weak hypotheses which
define the combined classifier as a function of the number of iterations T , multiplied
by the constant α so that the resulting scale αT is equal to the cumulative sum of
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weight updates after T iterations. This is shown, for the same dataset, on the right
of Figure 4 (using α = 10−6).

Remarkably, the two plots are practically indistinguishable. This shows that, at
least in this case, a variant of AdaBoost, when run for T rounds, computes essen-
tially the same solution vectors as when using `1-regularization with B set to αT .
Thus, early stopping — that is, halting boosting after a limited number of rounds —
is in this sense apparently equivalent to regularization. This correspondence was first
observed by Hastie, Tibshirani and Friedman [13], and explored further by Rosset,
Zhu and Hastie [29]. Later, Zhao and Yu [40] showed theoretically that the corre-
spondence will hold generally under certain but not all conditions.

All this suggests a plausible explanation for how AdaBoost works: Regulariza-
tion is a general technique that protects against overfitting by constraining, smooth-
ing, and/or promoting sparsity. As just discussed, AdaBoost with early stopping is
related to `1-regularization. Therefore, AdaBoost avoids overfitting through implicit
regularization.

However, there are important deficiencies with this argument. First of all, strictly
speaking, it does not apply to AdaBoost, but only to a variant of AdaBoost in which
the weights on each round are set to a small fixed constant. And second, this ar-
gument only makes sense if we stop AdaBoost after a relatively small number of
rounds since it is through early stopping, according to this view, that regularization
is actually applied.

What happens if AdaBoost is run for a large number of rounds, as in the cases
described in Section 3 where overfitting was apparently absent? According to this
view, making the number of rounds T large corresponds to choosing a regularization
parameter B that is also large. Thus, when T is very large, the purported regulariza-
tion must be extremely weak, and in the limit, must become so vanishingly weak as
to apparently have no constraining influence at all on the optimization problem that
it is meant to constrain. When this happens, how can it be having any effect at all?

In fact, Rosset, Zhu and Hastie [29] proved that if the regularization is relaxed to
the limit so that B→ ∞, then the resulting (anemically regularized) solutions turn
out asymptotically to maximize the margins of the training examples. This means
that we can prove something about how well such solutions will perform on new
data, but only as a result of their margin-maximizing properties and by applying the
margins theory. It is not the regularization that is explaining good performance here
since it has been weakened to the point of essentially disappearing altogether.

So to summarize, we have seen a perspective in which boosting with early stop-
ping can be related to `1-regularization. However, this view does not apply to Ada-
Boost, but only to a variant. And furthermore, for a large number of rounds, we can
only explain good performance, according to this view, by again appealing to the
margins theory rather than as a direct result of implicit regularization.
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6 Inherently Unpredictable Data

As discussed in Section 3, the margins theory shows that, if given “enough” data,
and if the weak learning condition holds, then the generalization error can be made
arbitrarily close to zero so that the resulting classifier is essentially perfect. This
obviously seems like a good thing. But it should also make us suspicious since,
even under the most ideal circumstances, it is usually impossible on real data to
get perfect accuracy due to intrinsic noise or uncertainty. In other words, the Bayes
error, the minimum possible error of any classifier, is usually strictly positive.

So on the one hand, the margins theory tells us that, with enough data, it should be
possible to train a perfectly accurate classifier, but on the other hand, the data itself
usually makes this impossible. In practice, this is not necessarily a contradiction,
even when the weak learning assumption holds. This is because the weak hypothesis
space typically is not fixed, but grows in complexity with the size of the training
set; for instance, this happens “automatically” when using decision trees as weak
hypotheses since the generated trees will usually be bigger if trained with more
data. Nevertheless, it would certainly be desirable to have a theory that more directly
handles the case in which the Bayes error is nonzero.

Indeed, it has been proved that AdaBoost’s combined classifier has an error rate
that converges to the Bayes optimal provided that the algorithm is given enough
data, that it is run for enough but not too many rounds, and that the weak hypothe-
ses come from a class of functions that is “sufficiently rich.” In this sense, the algo-
rithm is said to be universally consistent, a property that was proved by Bartlett and
Traskin [1] following the work of many others [3, 5, 14, 19, 21, 38, 39].

This means that AdaBoost can (theoretically) learn optimally even in noisy set-
tings. Furthermore, this theory does not depend on the weak learning condition.
However, the theory does not explain why AdaBoost can often work even when run
for a very large number of rounds since, like all explanations other than the margins
theory, it depends on the algorithm being stopped after a finite and relatively small
number of rounds. Furthermore, the assumption of sufficient richness among the
weak hypotheses can also be problematic.

Regarding this last point, Long and Servedio [18] presented an example of a
learning problem which shows just how far off a universally consistent algorithm
like AdaBoost can be from optimal when this assumption does not hold, even when
the noise affecting the data is seemingly very mild. In this example, each data point
has its label inverted with quite low probability, say 1%. The Bayes optimal classifier
has an error rate that is also just 1%, and is obtainable by a classifier of the same
form used by AdaBoost. Nevertheless, AdaBoost, in this case, will provably produce
a classifier whose error exceeds 50%, in other words, at least as bad as random
guessing. In fact, this result holds even if the learning algorithm is provided with
unlimited training data. And it is really not a result about AdaBoost at all — it
is really about algorithms based on loss minimization. The same result applies to
any method that minimizes exponential loss, as well as most other commonly used
convex losses. It also holds even if regularization is applied. For instance, it can be
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dataset noise AdaBoost BrownBoost
letter 0% 3.7 4.2

10% 10.8 7.0
20% 15.7 10.5

satimage 0% 4.9 5.2
10% 12.1 6.2
20% 21.3 7.4

Table 2 The results of running AdaBoost and BrownBoost on the “letter” and “satimage” bench-
mark datasets. After converting to binary by combining the classes into two arbitrary groups, each
dataset was split randomly into training and test sets, and corrupted for training with artificial noise
at the given rates. The entries of the table show percent error on uncorrupted test examples. All
results are averaged over 50 random repetitions of the experiment. (These experiments were
conducted by Evan Ettinger, Sunsern Cheamanunkul and Yoav Freund, and were reported in [30].)

shown that the same result applies to support-vector machines, logistic regression,
linear regression, lasso, ridge regression, and many more.

So this example shows that such consistency results can fail badly if the weak
classifiers are not rich enough. It also shows that AdaBoost (and most other loss-
based methods) can be very susceptible to noise, even with regularization, at least on
artificially constructed datasets. This susceptibility to noise has also been observed
in practice, for instance, by Dietterich [6], and Maclin and Opitz [20].

How then should we handle noise and outliers? Certainly, these must be a prob-
lem on “real-world” datasets, and yet, AdaBoost often works well anyway. So one
approach is simply not to worry about it. Theoretically, various approaches to han-
dling noise in boosting have also been proposed, often using techniques based on
“branching programs” [15, 16, 17].

Yet another approach is based on an entirely different boosting algorithm called
boost-by-majority, due to Freund [8]. In a certain sense, this algorithm turns out
to be exactly optimally efficient as a boosting algorithm. Furthermore, it does not
appear to minimize any convex loss function. Like AdaBoost, the algorithm on each
round puts more weight on the harder examples. However, unlike AdaBoost, it has a
very interesting behavior in which it can “give up” on the very hard examples. This
property might make the algorithm more robust to noise by eventually ignoring
outliers and noise-corrupted examples rather than “spinning its wheels” on them as
AdaBoost does. Unfortunately, unlike AdaBoost, the boost-by-majority algorithm
is not adaptive in the sense that it requires prior knowledge about the number of
rounds and the degree to which the weak learning assumption holds. Nevertheless,
Freund [9] proposed making it adaptive by passing to a kind of limit in which time
is moving continuously rather than in discrete steps.

The resulting algorithm, called BrownBoost, is somewhat more challenging to
implement, but preliminary experiments suggest that it might be more resistent to
noise and outliers. See Table 2.

Summarizing, we have seen that, under appropriate conditions, AdaBoost prov-
ably converges in its accuracy to the best possible, even in the presence of noise
and even without the weak learning condition. On the other hand, AdaBoost’s per-
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formance can be very poor when the weak hypotheses are insufficiently expressive.
Noise can be a real problem for AdaBoost, and various approaches have been pro-
posed for handling it, including a form of boosting which operates in continuous
time.

7 Conclusions

This chapter has attempted to bring together several different approaches that have
been proposed for understanding AdaBoost. These approaches are reflective of
broader trends within machine learning, including the rise of methods based on
margin maximization, loss minimization, and regularization. As we have seen, these
different approaches are based on varying assumptions, and attempt to capture dif-
ferent aspects of AdaBoost’s behavior. As such, one can argue as to which of these
is most realistic or explanatory, a perspective that is likely to depend on individual
taste and experience. Furthermore, direct experimental comparison of the different
approaches is especially difficult due to the looseness of the various bounds and
theoretical predictions when applied to actual data.

For the most part, the different perspectives that have been presented do not sub-
sume one another, each having something to say about AdaBoost that is perhaps not
captured by the others. But taken together, they form a rich and expansive theory for
understanding this one algorithm. Perhaps someday a single overriding theory will
emerge that encompasses all of the others.
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