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Abstract

This expository paper first defines what an Artificial Neural Network is and describes some of the key
ideas behind them such as weights, biases, activation functions (mainly sigmoids and the ReLU function),
backpropagation, etc. We then focus on interesting properties of the expressive power of feedforward
neural networks, presenting several theorems relating to the types of functions that can be approximated
by specific types of networks. Finally, in order to help build intuition, a case study of effectiveness in the
MNIST database of handwritten digits is carried out, examining how parameters such as learning rate,
width, and depth of a network affects its accuracy. This work focuses mainly on theoretical aspects of
feedforward neural networks rather than providing a step-by-step guide for programmers.
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1 Introduction
Artificial Intelligence has been a popular topic in science fiction and news articles for at least a few decades,
and now many algorithms of this category are indeed incorporated in the everyday life of people with self-
driving cars, automatically generated image captions on search engines, recommendation algorithms, and
even job hirings. Despite the popularity of this term, it does not have a precise definition other than "a
program that does something smart" with the meaning of "smart" changing throughout the years. More
recently, this term has overwhelmingly been used to refer to machine learning algorithms, which can also
be called data driven algorithms, since they are nothing more than algorithms which adjust some of their
parameters in response to a data set. Out of these algorithms, one type is currently especially popular and is
the topic of this expository paper: Artificial Neural Networks.

Algorithms that fall under this term are more often than not used to mimic some sort of action which
could be executed by a human being, but for which we lack the mathematical tools to explicitly model in a
fully applicable way. A classical example of this is image classification: when you see a picture of a dog,
for instance, you brain immediately recognizes the animal and would most likely rarely mistake it for, say,
a lizard. Although biology does indeed study in depth how this recognition process works, we are yet to be
able to explicitly write down a static program which is capable of analyzing the picture of an animal and
correctly classifying what species it belongs to. Such a program would have to take into consideration the
particular configuration of each individual pixel in relation to all others, and be invariant through translation,
rotation, etc. Take for example a simple 1,280 by 960 pixel image: such a file would contain information
about 1,228,800 pixels, each of which is composed of 3 components (red, blue, and green) which are numbers
within some specified range (for the sake of simplicity, assume it is normalized to be some number between
0 and 1), resulting in 3,686,400 total parameters. Therefore, a program that attempts to classify this image
would in practice be calculating some function f ∶ [0, 1]3,686,400 → {a|a is an animal species}. Given this
huge dimensional dependence, and arguably arbitrary nature of features that define each possible animal,
writing from scratch a program that accomplishes this feat would be virtually impossible.

This is where artificial neural networks (henceforth also referred to as just "neural networks") come in.
Instead of trying to figure out explicitly what this function is, we attempt to approximate it with another
function F ∶ [0, 1]3,686,400 → {a|a is a species from some pre-determined collection of animals}, in which
we do not initially attempt to write down a close approximation, but rather allow the function to "learn"
from labeled data (meaning several pictures of animals with their a priori classified species). You can think
of this process as starting out with a function F0 and then completing several training stages (often called
training epochs), with a new function Fi being obtained after every itℎ stage. The result of this is a sequence
of functions {Fi} which we hope has the property

lim
n→∞

Fn = f .

In short, the network starts out computing a function which might be a terrible approximation of f , and
compares the classification done by this function with images previously classified by human beings. By
programing the network to adapt in order to obtain progressively better classification rates, we end up with
a program that correctly labels new images in a satisfying and consistent manner. In a similar spirit, Section
4 of this paper uses a neural network to associate pictures of digits into their appropriate categories.

This method has achieved such successful results over the past decade that neural networks have gained
considerable strength with programmers and played an ever-increasing part in society. Nowadays, deep
learning is being used to determine life-changing actions such as medical diagnoses, natural resource man-
agement, mortgage rates and more, but our theoretical knowledge of why and how they work so well in
many cases is still in its infancy. As the influence of neural networks grows, it is important to advance
our understanding of them in order to counter undesirable outcomes which have been noted in the past and
persist today such as networks incorporating racism and other forms of social bias from their training data.
To quote the computer scientist Ali Rahimi: "I’m okay using technology I don’t understand. I got here on
an airplane and I don’t fully understand how airplanes work... but I take comfort knowing that there is an
entire field of aeronautics dedicated to creating that understanding." With that in mind, mathematicians do
have a great role to play in order to advance this theory in a formalized and rigorous way.

This paper is aimed towards mathematicians and students of mathematics who have at least some back-
ground in multivariable calculus. Knowledge of some basic functional analysis is helpful for understanding
the proof of the Universal Approximation Theorem, but this background is not assumed and all the required
results are stated beforehand.

Although there are many types of artificial neural networks such as Recurrent (often used for speech and
audio recognition) and Convolutional (often used for image classification), this paper focuses generally on
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feedforward networks, which will be defined in the following section. This is perhaps the simplest form of
a neural network, which offers a great introduction to the field while still retaining an incredibly rich range
of applications and intellectual questionings.

The structure of this paper is as follows: first, we introduce the concept of feedforward neural networks
and many ideas tied to this structure such as activation functions, backpropagation and more; second, we
explore the expressive power of neural networks, meaning that we study what types of functions can be
approximated by different types of networks and then pursue bounds on the size of these networks; finally,
a case study of neural networks applied to the MNIST database of handwritten digits is included, in order to
help the reader gain intuition behind some practical aspects of neural networks. In a broad sense, the first part
presents its contents mostly in a conceptual manner (althoughwith appropriate notation and sketches of some
proofs); the second one engages in formal mathematics, with rigorous definitions and proofs; and the third
mostly presents interesting examples and phenomena that one might encounter when initially implementing
neural networks.

2 An Overview of Feedforward Neural Networks
2.1 Structure
2.1.1 Nodes And Layers

A feedforward neural network is an algorithm which works in waves, or layers. In each layer, there are
a given number of nodes, which are sometimes called perceptrons, or even neurons (by analogy with the
biological brain). Nodes are simply representations of numbers stored in the program. Starting with the
input layer, all the way to the output layer, the values stored (called the activation of the node), say, in the
ntℎ layer will be used to compute the values stored in the nodes in the (n + 1)tℎ layer. Mathematically, the
activations stored in a layer with k nodes can be represented by a vector of dimension k.

In order to refer to the structure of a specific neural network, the term depth is commonly used to refer to
the number of hidden layers in the network. Hence, when media sources (and often specialist) use the term
"deep network" or "deep learning" they simply mean that a specific network has a large number of layers.
In analogy to this term, another one, less commonly used, can also be found in literature: width. Width
usually refers to how many nodes there are in each hidden layer of the network. This term is well defined
for networks in which all hidden layers have the same number of nodes (the width is then this number), but
not so much in networks in which the number of nodes varies from layer to layer. A visual representation of
a feedforward network is presented in Figure 1.

This system is analogous to biological networks of neurons, in which one neuron firing up (transmit-
ting an electric signal) will fire up (propagate the electric signal) nearby neurons. A significant difference
between these two systems is that in biological networks, a neuron is either activated or not, while in arti-
ficial neural networks it may have a continuum of activations, such as a real number between 0 and 1 (like
in sigmoid networks), a non-negative number (like in ReLU networks), or even an imaginary number! In
the beginnings of artificial neural networks, some algorithms attempted to implement a binary activation
system, only allowing the values on nodes to be either 0 or 1. However, this approach significantly hindered
the efficiency of the learning process.

2.1.2 Weights, Biases and Activation Functions

Given the values stored in the ntℎ layer of the network (with, say, k nodes), how are the values of the next
layer (with, say, j nodes) calculated? Each neuron in the ntℎ layer is given a specific ’connection strength’
to each node in the next layer. This ’connection strength’ is mathematically represented by what is called a
weight, which is a real number. For notation, setwna,b ∈ ℝ as the weight between the atℎ node in the (n−1)tℎ

layer to the btℎ node in the ntℎ layer. In order to represent all the weights connecting these two layers, we
may use a matrix

Wn ∶=
⎡

⎢

⎢

⎣

wn1,1 … wn1,k
⋮ ⋱ ⋮
wnj,1 … wnj,k

⎤

⎥

⎥

⎦

.

We may also wish to add what is called a "bias", or "threshold", which is a constant b ∈ ℝj , and an
"activation function" which is a function � ∶ ℝ → ℝ that converts the value calculated by the weights and
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x1

x2

⋮

xn

⋮ ⋮ … ⋮ ⋮

F1(x)

F2(x)

⋮

Fm(x)

Figure 1: A visual representation of a feedforward network which approximates some function f ∶ ℝn →
ℝm by computing the function F (x) = (F1(x),⋯ , Fm(x)). In this approach, the network is shown as a
directed weighted graph. Note that here we adopt the notation x = (x1,⋯ , xn).

biases into something which can be stored in the network. In the end, in order to calculate the state An of
the ntℎ layer, we use the formula

An = �(WnAn−1 + bn) = �
⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

wn1,1 … wn1,k
⋮ ⋱ ⋮
wnj,1 … wnj,k

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

an−11
⋮
an−1k

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

bn1
⋮
bnj

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

.

In the above equation, we employ the following notation for matrices

�
⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

a1,1 … a1,k
⋮ ⋱ ⋮
aj,1 … aj,k

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

=
⎡

⎢

⎢

⎣

�(a1,1) … �(a1,k)
⋮ ⋱ ⋮

�(aj,1) … �(aj,k)

⎤

⎥

⎥

⎦

.

As the computations are carried out along the network’s layers, the final function F calculated by a
network of depthN is

F (x) = �(WN�(… �(W2�(W1x + b1) + b2)… ) + bN ).

2.2 Learning Process
Section 3 uses the structure introduced above to determine what types of functions can be approximated by
neural networks. However, in a real world scenario, these networks are used to estimate functions which we
do not know how to write down analytically (if we did, there would be no need to go though the trouble of
setting up a neural network). Although this paper does not go in depth regarding the learning process, a rough
outline of the most common method of training neural networks will be outlined here. It cannot be stressed
enough that even though this paper mostly explores the properties of expressivity of neural networks, most
emphasis and problems regarding the use of these algorithms rely on the training process, and how to obtain
the best results given a finite training data set. A neural networks is, after all, a data driven algorithm.

2.2.1 Cost Function

Suppose we want to approximate a function f ∶ ℝn → ℝm, and our network currently computes a function
F ∶ ℝn → ℝm. In order to determine how well a certain prediction given by the algorithm is, we may
establish a cost function, which measures the discrepancy of two functions. To do that, we can feed some
input x of which we know the value of f (x) (this would be called a label data point) to the network and
see what result it computes. In a broader sense, we may see how well the network performs on a testing
set (x1,… , xN ) in which we know all the values for f (x1),… , f (xN ). There is more than one choice for
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such a function, but consider the following one, which is often referred to as the "Mean Square Error" or
"Quadratic Cost Function"

C ∶= 1
2N

N
∑

i=1
||f (xi) − F (xi)||2, (1)

where || ⋅ || represents the usual ℝm norm

||y|| ∶=
√

y21 +⋯ + y2m for y = (y1,… , ym) ∈ ℝm.

This function, then, becomes large when our network approximates f badly, and small when the approx-
imation is accurate. Additionally notice that if we set Cx ∶=

1
2N ||f (x) − F (x)||2, we have that

C =
N
∑

i=1
Cxi .

This property will be important in the algorithm described in Section 2.2.3.

2.2.2 Gradient Descent

Gradient descent is a standard method used in optimization problems. It relies on concepts from multivari-
able calculus.

Definition 2.1. The gradient of a differentiable function f ∶ ℝn → ℝ at a point x = (x1,… , xn) ∈ ℝn is a
vector in ℝn of the form

∇f (x) ∶=
(

)f
)x1

(x),… ,
)f
)xn

(x)
)

. (2)

It is a well known result that, given a point x ∈ ℝn, the gradient at that point indicates the direction of
steepest ascent. Given that f is differentiable at x, it can be approximated linearly, and therefore the vector
−∇f (x) indicates the direction of steepest descent of the function f at the point x.

In order to obtain the minimum value of the function, the gradient descent strategy tells us to start at a
given x0 ∈ ℝn, calculate the value of∇f (x0), and then proceed to calculate a new point x1 ∶= x0−�∇f (x0),
where � > 0 is called the learning rate. We then repeat this process, creating a sequence {xi} defined by
our initial choice of x0, the learning rate �, and the rule: xi+1 = xi − �∇f (xi) for any i ∈ ℕ. This sequence
continues until we approach a region close to our desired minimum.

The method of gradient descent when taken continuously over infinitesimally small increments (that is,
taking the limit �→ 0) and in regards to a "nice" function usually converges to a local minimum. However,
depending on the location of the initial x0, the local minimum achieved may not be the global minimum
of the function. Furthermore, since when carrying out calculations on an unknown function we must take
discrete steps (which vary in length depending on the learning rate), we are not even guaranteed a local
minimum but rather may oscillate close to one, or even ’jump’ past it altogether if the learning rate is too
big. Still, even with these possible complications, gradient descent is a surprisingly successful method for
many real life applications and is the most standard method of training for feedforward neural networks and
many other machine learning algorithms.

Given that our cost function indicates how poorly our neural network approximates a given function,
by calculating the gradient of the cost function with respect to the weights and biases of the network and
adjusting these parameters in the direction opposite to the gradient, we will decrease our error and therefore
lead us closer to an adequate network (in most cases).

2.2.3 Backpropagation

The explanation in this section is a simple introduction to the method of backpropagation in feedforward
neural networks. The proof of some equations will only be sketched, as they are not related to the mathe-
matics of the expressive power of networks, which forms the bulk of this paper. For a more comprehensive
understanding of the backpropagation algorithm, the second chapter of the online book Neural Network and
Deep Learning (available at: http://neuralnetworksanddeeplearning.com/) is a great reference.
Much of the ideas developed in this section and in Section 4 are based on this book. It should also be noted
that the notation in this section seems rather complicated, but the math behind the process basically relies
only on repeated applications of the chain rule, and is not too complicated if the reader is familiar with this
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rule from multivariable calculus. Having said that, the notation is cumbersome, and much attention should
be paid to the innumerous indices in the formulas.

The big challenge of applying gradient descent to neural networks is calculating the partial derivatives
of the cost function with respect to each individual weight and bias (namely, for every )C

)wli,j
and )C

)blj
). This is

where backpropagation comes in. This algorithm first tells us how to calculate these values for the last layer
of connections, and with these results then inductively goes "backwards" through the network, calculating
the partial derivatives of each layer until it reaches the first layer of the network. Hence the name "backprop-
agation". For now, we think of the cost function as taken over a training set consisting of a single labeled
data point x.

The property mentioned at the end of Section 2.2.1 now becomes extremely important, as the algorithm
developed in this section only works if we know the values of all activations in the network for a given input.
Therefore, in fact, we only know how to calculate ∇Cx for a given labeled data point x. However, because
of the property, we use

∇C = ∇(
N
∑

i=1
Cxi ) =

N
∑

i=1
∇Cxi , (3)

which means that we can execute this process for each data point and then add the values of the gradient
together. This is important because employing backpropagation in a large training set for every training
epoch becomes a very computationally expensive approach, so instead we select a few elements from the
training set1, calculate the gradient, update the network and repeat the process until the network arrives at
satisfactory results.

In a previous section, we defined An to be the vector representing the activations of the nodes in the ntℎ
layer of the network. However, for the purposes of this section, it will be useful for us to consider what the
values sent by the previous layer were before the activation function was applied. Consider

zlj ∶=
∑

k
wlj,ka

l−1
k + blj so that alj = �(z

l
j) and Al = �(Zl).

In the previous equation, Zl ∶=
∑

k z
l
kek is a vector with entries corresponding to the values zlj (ei are

the standard basis vectors). Additionally, consider the quantity

�lj ∶=
)C
)zlj

and Δl ∶=
∑

k
�lkek. (4)

These values will be useful for propagating the algorithm backwards through the network and are directly
related to )C

)wli,j
and )C

)blj
by the chain rule, since

)C
)wli,j

= )C
)zlj

)zlj
)wli,j

= �lja
l−1
i and )C

)blj
= )C
)zlj

)zlj
)blj

= �lj . (5)

Since al−1j is readily available for any node of the network, if we are able to calculate the value of the
�lj’s we will have been successful in obtaining our gradient! Our first step is calculating this value for the last
layer of the network, that is, �Lj for a network with L layers. It is not hard to notice that, since aLj = �(z

L
j ),

again by the chain rule

�Lj =
)C
)aLj

)aLj
)zlj

= )C
)aLj

�′(zLj ). (6)

Using the Mean Square Error function, noticing that F (x) = AL = (aL1 ,… , aLk ) and letting f (x) =
(y1,… , yk) we get that

�Lj = (a
L
j − yj)�

′(zLj ), (7)

which can easily be calculated by a computer if we know how to calculate �′ (which should be true for any
practical activation function). In order to obtain this result in vector form, it is common to write

1A very common form of selecting these elements is randomly sampling from all available labeled data. A short note about this is
included in Section 4, when Stochastic Gradient Descent is mentioned.
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ΔL = ∇AL ⊙ �′(ZL), (8)

where ∇AL ∶= ( )C
)aL1

,… , )C
)aLk
) is the gradient of C taken with respect to the elements of AL and ⊙ is the

Hadamard Product, which multiplies two matrices (or vectors) elementwise, defined as

⎡

⎢

⎢

⎣

a1,1 … a1,k
⋮ ⋱ ⋮
aj,1 … aj,k

⎤

⎥

⎥

⎦

⊙
⎡

⎢

⎢

⎣

b1,1 … b1,k
⋮ ⋱ ⋮
bj,1 … bj,k

⎤

⎥

⎥

⎦

∶=
⎡

⎢

⎢

⎣

a1,1b1,1 … a1,kb1,k
⋮ ⋱ ⋮

aj,1bj,1 … aj,kbj,k

⎤

⎥

⎥

⎦

.

Now we will only need to "propagate" this backwards in the network in order to obtain �L−1j . In order
to do so, apply the chain rule once again

�L−1j = )C
)zL−1j

= ∇ZLC ⋅ )Z
L

)zL−1j

=
k
∑

i

)C
)zLi

)zLi
)zL−1j

=
k
∑

i
�Li

)zLi
)zL−1j

.

If we focus on the term )zLi
)zL−1j

, we find that

)zLi
)zL−1j

=
)(
∑

kw
L
i,ka

L−1
k + bLi )

)zL−1j

=
)(
∑

kw
L
i,k�(z

L−1
k )+bLi )

)zL−1j

=
)(wLi,j�(z

L−1
j ))

)zL−1j

= wLi,j�
′(zL−1j ),

which, again, can be easily calculated by a computer given the network. Therefore

�L−1j =
k
∑

i
�Li w

L
i,j�

′(zL−1j ). (9)

This formula tells us how to calculate any �lj in the network, assuming we know Δl+1. Since (8) tells us
how to jump start ΔL in the last layer of the network, we are done, and the algorithm is successful.

Summarizing what was done in this section, we first defined �li ∶=
)C
)zlj

, which has direct relationships

with our desired values of )C
)wli,j

and )C
)blj

. We then wrote down what the �Li ’s should be for the last layer of

the network, and finally developed a way to calculate all the �li ’s, given that we know what the values of �l+1i
are. Thus, by propagating this method backwards through the layers of the network we are able to find all
our desired partial derivatives, and can therefore calculate the value of ∇C as a function of the weights and
biases of the network and execute the method of gradient descent.
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3 The Expressive Power of Feedforward Neural Networks
3.1 Universal Approximation
3.1.1 Useful Definitions and Theorems from Functional Analysis

Many of the proofs related to universal approximation rely on results from functional analysis. Most of these
theorems have very standard proofs, which can be found in almost any textbook on functional analysis. For
the sake of conciseness, the theorems used later in the paper will be stated, but their proofs will be omitted.
The reader can find proofs for the following results in sources such as [Bre10].

Theorem 3.1. (Lebesgue Dominated Convergence Theorem) Let X be a measure space, � be a Borel
measure on X, g ∶ X → ℝ be L1 and {fn} be a sequence of measurable functions from X → ℝ such that
|fn(x)| ≤ g(x) for all x ∈ X and {fn} converges pointwise to a function f . Then f is integrable and

lim
n→∞∫ fn(x)d�(x) = ∫ f (x)d�(x). (10)

Theorem 3.2. (Hahn-Banach Theorem - Geometric Form) Let V be a normed vector space andA,B ⊂ V
be two non-empty, closed, disjoint and convex subsets such that one of them is compact. Then there exists a
continuous linear functional f ≢ 0, some � ∈ ℝ and an � > 0 such that f (x) ≤ � − � for any x ∈ A and
f (y) ≥ � + � for any y ∈ B.

We focus on a corollary derived from this theorem.

Corollary 3.3. Let V be a normed vector space over ℝ and U ⊂ V be a linear subspace such that U ≠ V .
Then there exists a continuous linear map f ∶ V → ℝ with f (x) = 0 for any x ∈ U , and f ≢ 0.

Proof. Let z ∈ V ∖U . By the previous theorem (and noting that the set {z} is compact), there exists f ∶
V → ℝ and � > 0 such that f (x) < � for any x ∈ U and f (z) > �, which means that

f (x) < � < f (z) for all x ∈ U .

Since f is linear, and U is a subspace, this means that, for any x0 ∈ U, � ∈ ℝ we have that

f (�x0) = �f (x0) < �,

which means that

f (x0) <
�
�

for all � > 0 and f (x0) >
�
�

for all � < 0,

which implies that f (x) = 0 for all x ∈ U and f (z) > � > 0.

Definition 3.4. Given a topological space Ω, we define C(Ω) ∶= {f ∶ Ω→ ℝ|f is continuous}.

Theorem 3.5. (Riesz Representation Theorem) Let Ω be a subset of ℝn and F ∶ C(Ω) → ℝ be a linear
functional on the space of continuous real functions with domain on Ω. Then there exists a signed Borel
measure � on Ω such that for any f ∈ C(Ω), we have that

F (f ) = ∫Ω
f (x)d�(x). (11)

We now move onto some definitions which are specific to the problem of universal approximation in
neural networks.

Definition 3.6. For f ∶ ℝ → ℝ an activation function, set

Σn(f ) = span{f (y ⋅ x + �)|y ∈ ℝn, � ∈ ℝ}. (12)

In the above equation, y ⋅ x represents the standard dot product in ℝn.

The set Σn(f ) consists of all the functions that can be calculated by a neural network with a single hidden
layer and activation function f .

8
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Definition 3.7. Let Ω be a topological space and f ∶ ℝ → ℝ. We say that a neural network with activation
function f is a universal approximator on Ω if Σn(f ) is dense in C(Ω), the set of continuous functions from
Ω to ℝ.

One could, in theory, modify the above definition to be such that the set of functions generated by a
neural network with activation function f is dense in C(Ω). This would relate more closely to what we
mean by universal approximation and would enclose the previous definition (which assumes the network
has only one hidden layer). However, for historical reasons, this is the definition which prevailed, and in no
way does it hinder any of our results so it shall be the one employed.

Definition 3.8. Let n be a natural number. We say an activation function f ∶ ℝ → ℝ is n-discriminatory if
the only signed Borel measure � such that

∫ f (y ⋅ x + �)d�(x) = 0 for all y ∈ ℝn, and � ∈ ℝ (13)

is the zero measure.

Definition 3.9. We say an activation function f ∶ ℝ → ℝ is discriminatory if it is n-discriminatory for any
n.

Definition 3.10. A function f ∶ ℝ → ℝ is called a sigmoid if it satisfies the following two properties:

lim
x→∞

f (x) = 1 and lim
x→−∞

f (x) = 0.

Definition 3.11. Let n be a natural number. Then we define

In ∶= [0, 1]n = {x = (x1,⋯ , xn) ∈ ℝn
|xi ∈ [0, 1] for any i = 1,⋯ , n}.

Definition 3.12. The Rectified Linear Unit (also denoted ReLU) is a function ℝ → ℝ defined by:

ReLU (x) ∶= max(0, x).

3.1.2 Statement and Proof of Universal Approximation Theorem for Sigmoid and ReLU Activation
Functions

A paper published by George Cybenko in 1989, titled "Approximation by Superpositions of a Sigmoidal
Function" sparked a series of works for the next few years which attempted to determine which activation
functions lead to the Universal Approximation Property. In [Cyb89], he proves this for continuous sigmoid
functions by presenting what are Theorem 3.13 and Lemma 3.14 in the present paper.

Among the papers published onUniversal Approximation, perhaps the one containing the strongest result
is [LLPS93], published in 1993. In it, it is proven that any activation function will lead to a network with
universal approximation capacity if and only if this function is not a polynomial almost everywhere (in the
sense of measure theory). Despite this being an elegant paper, we will focus on the work done by Cybenko,
which has certain historical importance and contains relatively short proofs.

Theorem 3.13. Let f be a continuous discriminatory function. Then a neural network with f as the acti-
vation function is a universal approximator.

Proof. For the sake of contradiction, assume Σn(f ) is not dense in C(In). It follows that Σn(f ) ≠ C(In). We
then apply the corollary of the Hahn-Banach theorem to conclude that there exists some continuous linear
functional F ∶ C(In) → ℝ such that F ≠ 0 but F (g) = 0 for any g ∈ Σn(f ). By the Riesz Representation
Theorem, there exists some Borel measure � such that

F (g) = ∫In
g(x)d�(x) for all g ∈ C(In).

However, since for any y and � the function f (y ⋅ x + �) is an element of Σn(f ), this means that for all
y ∈ ℝn, and � ∈ ℝ we have ∫ f (y ⋅ x + �)d�(x) = 0, which means that � = 0 (since f is discriminatory)
and therefore F (g) = 0 for any g ∈ C(In). This contradicts the corollary of the Hahn-Banach theorem, and
thus finishes the proof.

9
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Lemma 3.14. All bounded, Borel measurable sigmoid functions are discriminatory.

Proof. Let f be a bounded, Borel measurable sigmoid function, and assume that for a given measure � ∈
M(In) we have that

∫In
f (y ⋅ x + �)d�(x) = 0 for all y ∈ ℝn, for all � ∈ ℝ.

Our aim is to show that � = 0. In order to do that, consider the function 
 , obtained by fixing �, � ∈ ℝ
and taking the limit


(x) = lim
�→∞

f (�(y ⋅ x + �) + �) =

⎧

⎪

⎨

⎪

⎩

1 if y ⋅ x + � > 0
f (�) if y ⋅ x + � = 0
0 if y ⋅ x + � < 0

.

By the Lebesgue Dominated Convergence Theorem, we have that

∫In

(x)d�(x) = lim

�→∞∫In
f (�(y ⋅ x + �) + �)�(x) = 0.

By using the information above, we derive that

∫In

(x)d�(x) = ∫H+

y,�

1d�(x) + ∫Πy,�
f (�)d�(x) + ∫H−

y,�

0d�(x)

= �(H+
y,�) + f (�)�(Πy,�)

= 0,

where

H+
y,� ∶= {x ∈ In|y ⋅ x + � > 0},

Πy,� ∶= {x ∈ In|y ⋅ x + � = 0},
H−
y,� ∶= {x ∈ In|y ⋅ x + � < 0}.

This is true for any choice of y, �. Since this is true for any �, and f (�)→ 1 as �→ ∞, we get that

�(H+
y,�) + �(Πy,�) = 0.

In a similar fashion, if we let � → −∞, we get that f (�)→ 0 and

�(H+
y,�) = 0.

Now consider the functional F ∶ L∞(ℝ)→ ℝ defined as:

F (ℎ) ∶= ∫In
ℎ(y ⋅ x)d�(x).

SinceL∞(ℝ) is the space of bounded functions, this integral (and therefore the functional) is well defined
for any ℎ ∈ L∞(ℝ). If we take 1[�,∞) as the indicator function of the interval [�,∞), we get that

F (1[�,∞)) = ∫In
1[�,∞)(y ⋅ x)d�(x) = �(H+

y,�) + �(Πy,�) = 0.

Similarly, for any open interval (�,∞), we have

F (1(�,∞)) = ∫In
1(�,∞)(y ⋅ x)d�(x) = �(H+

y,�) = 0.

10
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Using linearity, we get that F (ℎ) = 0 for the indicator function ℎ of any interval. It follows that F (ℎ) = 0
for any simple function. Using that simple functions are dense inL∞(ℝ), it follows that F = 0. Additionally,
since sin and cos are elements of L∞(ℝ), we can use that

F (cos) + iF (sin) = ∫In
(cos(y ⋅ x) + i sin(y ⋅ x))d�(x)

= ∫In
(cos(y ⋅ x) + i sin(y ⋅ x))d�(x)

= ∫In
eiy⋅xd�(x)

= 0.

This is true for all y ∈ ℝn, which means that the Fourier transform of � is 0. This is only possible if
� = 0, and we are done with the proof.

We have now proven that the universal approximation property holds for networks with continuous sig-
moid functions. However, many state-of-the-art algorithms presently use ReLU as their activation function.
Although general results such as [LLPS93] apply to this function, we take a different approach, and, in the
spirit of the work done by Cybenko, prove that the ReLU is 1-discriminatory, and then use Lemma 3.16 to
show that this implies the universal approximation property for functions with inputs of finite dimension.
To the best of the author’s knowledge, this is the first time this approach is taken to prove that networks with
ReLU activation function are universal approximators.

Lemma 3.15. The ReLU function is 1-discriminatory.

Proof. Let � be a signed Borel measure, and assume the following holds for all y ∈ ℝ and � ∈ ℝ:

∫ ReLU (yx + �)d�(x) = 0.

We want to show that � = 0. For that, we will construct a sigmoid bounded, continuous (and therefore
Borel measurable) function from subtracting two ReLU functions with different parameters. In particular,
consider the function

f (x) =

⎧

⎪

⎨

⎪

⎩

0 if x < 0
x if x ∈ [0, 1]
1 if x > 1

. (14)

Then any function of the form g(x) = f (yx + �) with y ≠ 0 can be described as

g(x) = ReLU (yx + �1) − ReLU (yx + �2) (15)

by setting �1 = −�∕y and �2 = (1 − �)∕y. If y = 0, then instead set

g(x) = f (�) =

{

ReLU (f (�)) if f (�) ≥ 0
−ReLU (−f (�)) if f (�) ≤ 0

Which means that for any y ∈ ℝ, � ∈ ℝ

∫ f (yx + �)d�(x) = ∫ (ReLU (yx + �1) − ReLU (yx + �2))d�(x)

= ∫ ReLU (yx + �1)d�(x) − ∫ ReLU (yx + �2)d�(x)

= 0 − 0 = 0.

By the previous lemma, f is discriminatory, and therefore, � = 0.

Lemma 3.16. If Σ1(f ) is dense in C([0, 1]) then Σn(f ) is dense in C([0, 1]n)

11
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Proof. We use the fact that the span of the set {g(a ⋅ x) | a ∈ ℝn, g ∈ C([0, 1])} is dense in C([0, 1]n). That
is, given any function ℎ ∈ C([0, 1]n) and � > 0 there exist functions gk in C([0, 1]) such that

|ℎ(x) − ΣNk=1gk(ak ⋅ x)| < �∕2.

If we now examine each function gk(ak ⋅ x), and use the assumption that Σ1(f ) is dense in C([0, 1]), we
conclude that for any such function, there exists a sum of functions such that

|gk(ak ⋅ x) − Σ
Nk
i=1f (yk,i ⋅ x + �k,i)| < �∕2k.

By applying the triangle inequality, we get that

|ℎ(x) − ΣNk=1Σ
Nk
i=1f (yk,i ⋅ x + �k,i)| < |ℎ(x) − ΣNk=1gk(ak ⋅ x)| + k(�∕2k)

< �∕2 + �∕2
= �.

This shows we can get arbitrarily close to any function in C([0, 1]n) by using functions in Σn(f ).

As a direct consequence of Theorem 3.13 and previous lemmas, we arrive at the desired result:

Corollary 3.17. (Universal Approximation Theorem) Neural Networks with either ReLU or continuous
sigmoid activation functions are universal approximators.

3.2 Effective Versions of the Universal Approximation Theorem
We have now proved that a Neural Network with a single hidden layer and sufficiently many nodes is capable
of approximating any continuous function. However, this design differs drastically from the usual architec-
ture used in Neural Networks, in which a multitude of layers are employed (thus rending the fashionable
term "deep learning"). Can we prove that a network with bounded width retains the Universal Approxima-
tion Property? The following simple result achieves this goal, at the cost of using a deeper structure (more
layers) for the network.

Theorem 3.18. Let f ∶ [0, 1]d → [0, 1] be the function calculated by a single layer ReLU neural network of
input dimension d, output dimension 1 and n hidden nodes. Then there exists another ReLU neural network,
with n hidden layers and width d + 2, which calculates the same function f .

The proof of this Theorem uses the strategy of using d of the nodes in each layer to store the initial input,
one node to calculate each of the nodes in the original network, and the last node to store the value of the
sum of the functions.

Proof. Since f is generated by a single layer ReLU network with n hidden nodes, it is of the form

f (x) = ReLU (b +
n
∑

i=1
wiReLU (gi(x))),

where each gi is of the form gi(x) = yi ⋅ x + bi with yi ∈ ℝd and bi ∈ ℝ. Since [0, 1]d is compact and any
function generated by a ReLU network is continuous, the term

∑i
j=1wjReLU (gj(x)) achieves a minimum

for any i ≤ n and therefore there exists a number T > 0 such that

T +
i

∑

j=1
wjReLU (gj(x)) > 0

for any x ∈ [0, 1]d and any i ≤ n.
Now consider a new network in which each hidden layer uses d nodes to copy the original inputs. Ad-

ditionally each itℎ hidden layer is also equipped with another node that computes the function ReLU (gi(x))
from the input nodes copied to the previous layer, and a last node that computes

ReLU (T +
i−1
∑

j=1
wjReLU (gj(x))) = T +

i−1
∑

j=1
wjReLU (gj(x)) > 0

12
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by doing a linear combination of the two additional nodes of the previous layer. In short, the itℎ layer up to
i ≤ n will compute the function

ℎi(x) = (x1,⋯ , xd , ReLU (gi(x)), ReLU (T +
i−1
∑

j=1
wjReLU (gj(x)))).

The final layer then computes

ℎn+1(x) = ReLU [wnReLU (gn(x)) + ReLU (T +
n−1
∑

j=1
wjReLU (gj(x))) − T + b]

= ReLU (b +
n
∑

i=1
wiReLU (gi(x)))

= f (x),

which completes the proof by using n hidden layers, each of width d + 2.

We now move onto two stronger and more fundamental results about ReLU networks:

Definition 3.19. A function f ∶ ℝn → ℝ is called affine if it is of the form:

f (x) = a ⋅ x + b

for some a ∈ ℝn and b ∈ ℝ.

We may also wish to extrapolate this concept and define:

Definition 3.20. A function f ∶ ℝn → ℝm is called affine if all its components fi ∶ ℝn → ℝ are affine
according to the definition above.

Lemma 3.21. Let f ∶ ℝd → ℝ be the function calculated by an arbitrary neural network with ReLU
activation. Then there exist affine functions g1, ..., gN and ℎ1, ..., ℎM such that f is of the form

f (x) = g(x) − ℎ(x) with g(x) = max
�<N

g�(x) ℎ(x) = max
�<M

ℎ�(x). (16)

Lemma 3.22. In addition to that, any function of the form represented above can be calculated exactly by
a ReLU network of width (d + 2) and depth (max{M,N} + 1). There also exists a network of width (d + 1)
and depth (M +N) with the same property.

These two lemmas create a nice "if and only if" relation, in which it is shown that all functions created
by ReLU feedforward networks are of a specific form, and that all functions of that form can be represented
by these networks with bounded width and depth.

In order to prove these theorems, we must first develop some machinery involving affine functions and
the max{⋅} function.

Definition 3.23. Let A,B be sets of real numbers,and x be a real number. Define

A + x ∶= {a + x | a ∈ A}, A + B ∶= {a + b | a ∈ A, b ∈ B}, xA ∶= {ax | a ∈ A}. (17)

Lemma 3.24. LetA,B be finite sets of real numbers, and x be a real number. Then the following properties
hold:

(i) max{A} + max{B} = max{A + B}

(ii) max{A,max{B}} = max{A,B}

(iii) max{A,max{B} + x} = max{A,B + x}

(iv) max{A,−max{B} + x} = max{A + B, x} − max{B}

(v) xmax{A} =

{

max{xA} if x ≥ 0
−max{−xA} if x < 0

13
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The proofs of these equalities are not too hard to prove, and, to quote Prof. David Williams: "you can
also check for yourself that [these] hold: I wouldn’t dream of depriving you of that pleasure". The hardest
proof among these is likely that of (iv), so it shall be included.

Proof. (of (iv))We break this problem into two cases, the first one being: max{A,−max{B}+x} = a ∈ A.
It follows that

a > x − max{B} → a + max{B} > x. (18)
Then on the right side of (iv) we have

max{A + B, x} − max{B} = max{A} + max{B} − max{B} = a, (19)

which is what we hoped for. The second case, then, is: max{A,−max{B} + x} = −b + x for some b ∈ B.
Similarly, it follows that

− b + x > max{A}→ x > max{A} + b = max{A} + max{B} = max{A + B}. (20)

Once again, on the right side if (iv) we have:

max{A + B, x} − max{B} = x − b. (21)

We now move onto affine functions.
Lemma 3.25. Let f, g ∶ ℝn → ℝ be affine functions, and � be a real number. Then the following properties
hold:

(i) (f + g)(x) is affine.

(ii) �f (x) is affine.

(iii) f (x) + � is affine.
Once again, proving these properties is not complicated, and "I wouldn’t dream of depriving you of that

pleasure".
We now finally move onto proving Lemma 3.21.

Proof of Lemma 3.21. We want to show that functions generated by ReLU feedforward networks are of the
form in (16). We shall do this using induction on the number of hidden layers of the network.

Base Case: (input layer and output layer are directly connected) Let ai ∈ ℝ be the weight connecting
each itℎ input note to the output node, and b ∈ ℝ be the bias. Furthermore, define a =

∑n
i=1 aiei, where ei

are the standard basis vectors. Then the function calculated by the network is

f (x) = ReLU (a ⋅ x + b) = max{0, a ⋅ x + b},

which is, indeed, of the form in (16). ✓
Inductive Step: Assume that for a network the values stored in the layer immediately preceding the

output node are all calculated by functions of the form in (16). More formally, assume the layer immediately
preceding the output node has k nodes, and that for the itℎ node in this layer, the function calculated in it is
of the form

f i(x) = gi(x) − ℎi(x) with gi(x) = max
�<N i

{gi�(x)} ℎi(x) = max
�<M i

{ℎi�(x)}.

Furthermore, let wi ∈ ℝ be the weight connecting each itℎ node of the last hidden layer to the output node,
and b ∈ ℝ be the bias. Then the function calculated by the network is

f (x) = ReLU (b +
k
∑

i=1
wif

i(x))

= max{0, b +
k
∑

i=1
wi[gi(x) − ℎi(x)]}

= max{0, b +
k
∑

i=1
wi[max�<N i

{gi�(x)} − max�<M i
{ℎi�(x)}]}

= max{0, b +
k
∑

i=1
[wi max�<N i

{gi�(x)} −wi max�<M i
{ℎi�(x)}]}.
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Let us look closer into the sum in the previous expression. By Lemma 3.24, if wi ≥ 0, we can bring the
wi ’inside’ the brackets, while if wi < 0 we must multiply the term and the argument of the max function
by −1 in order to do so. Define the following sets

A ∶= {i ∈ {1, ..., k}|wi ≥ 0}, B ∶= {i ∈ {1, ..., k}|wi < 0}. (22)

Then we have that

k
∑

i=1
(wi max�<N i

{gi�(x)} −wi max�<M i
{ℎi�(x)}) =

∑

i∈A
max
�<N i

{wigi�(x)} −
∑

i∈B
max
�<N i

{−wigi�(x)}

−
∑

i∈A
max
�<M i

{wiℎi�(x)} +
∑

i∈B
max
�<M i

{−wiℎi�(x)}.

It should be noted that, by Lemma 3.25, all the wigi�(x) and wiℎ
i
�(x), or linear combinations of them

are still affine functions. By repeatedly applying Lemma 3.24(i), we therefore conclude that
∑

i∈A
max
�<N i

{wigi�(x)} +
∑

i∈B
max
�<N i

{−wiℎi�(x)} = max{F1}

and
∑

i∈B
max
�<N i

{−wigi�(x)} +
∑

i∈A
max
�<N i

{wiℎi�(x)} = max{F2},

where F1, F2 are finite families of affine functions. We then use this fact and Lemma 3.24 to finish the proof.

f (x) = max{0, b +
k
∑

i=1
(wi max�<N i

{gi�(x)} −wi max�<M i
{ℎi�(x)})}

= max{0, b + max{F1} − max{F2}}
= max{0,max{b + F1} − max{F2}}
= max{F2, b + F1} − max{F2}

Now in order to prove Lemma 3.22, we will first prove the following result, which is included in [Han17]:

Lemma 3.26. Let d ∈ ℤ+, T ∶ ℝd
+ → ℝ be an arbitrary function and L ∶ ℝd → ℝ be affine. Define the

affine function A ∶ ℝd+1 → ℝd+1 by

A(x, y) ∶= (x, L(x) + y) (23)

where x ∈ ℝd
+ and y ∈ ℝ. Then we have that

(A◦ReLU◦A−1)(x, T (x)) = (x,max{L(x), T (x)}). (24)

Proof.

(A◦ReLU )(A−1(x, T (x))) = (A◦ReLU )(x, T (x) − L(x))
= A(x,max{0, T (x) − L(x)})
= (x,max{0, T (x) − L(x)} + L(x))
= (x,max{0 + L(x), T (x) − L(x) + L(x)})
= (x,max{L(x), T (x)})

In a neural network setting, this lemma implies that we can calculate the maximum of two numbers using
a node, while copying all the other nodes to the following layer.We will use repeated iterations of this lemma
in order to prove our desired result.
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Proof of Lemma 3.22. First consider f of the form

f (x) = max
�≤N

{g�(x)}.

Using the notation from the previous lemma, for any � ∈ {1,… , N} define

A�(x, y) ∶= (x, y + g�(x)).

And for any � ∈ {2,… , N}, set

H�(x, y) ∶= (A−1� ◦Aa−1)(x, y) = (x, y + g�−1(x) − g�(x)).

These are still affine functions. Additionally, defineH1 ∶ ℝd → ℝd+1 andHN+1 ∶ ℝd+1 → ℝ by

H1(x) ∶= (x,−g1(x)) HN+1(x, y) ∶= (y + gN (x)).

Then, by using Hi as the affine functions that connect the itℎ layer to the next one (the first one being
the input layer), we use the lemma to conclude that the network will computemax�≤N{g�(x)} exactly using
d + 1 nodes in each hidden layer, andN hidden layers. That is, the function F generated by the network is

F (x) = (HN+1◦ReLU◦HN◦… ◦H2◦ReLU◦H1)(x)

= (HN+1◦ReLU◦AN−1◦A
−1
N ◦ReLU◦… ◦ReLU◦A1◦A

−1
2 ◦ReLU◦H1)(x)

= max
�≤N

{g�(x)}

= f (x).

To finish the proof, we consider the general case:

f (x) = max
�≤N

{g�(x)} − max�≤M
{ℎ�(x)}.

For this, we use an additional node in each hidden layer to computemax�≤M{ℎ�(x)} in parallel with the
computations used to obtain max�≤N{g�(x)}. At the end of this process, we will have used d + 2 nodes in
each hidden layer, andmax{M,N} hidden layers to output two nodes: one with the value of g(x), the other
with the value of ℎ(x). We thus use a final layer to compute their difference and we are done with the proof.
The final network has width d + 2 and depth (max{M,N} + 1).

Alternatively, we can use a design which, once again, uses d nodes in each layer to copy the original
inputs, and only one additional node in each layer. Using this strategy, we first use N layers to calculate
the value of G ∶= g(x). Since G is just a real number, calculating max�≤M{ℎ�(x) + G} requires the exact
same strategy as just calculating max�≤M{ℎ�(x)}, since an affine function plus a constant is still an affine
function. As a result, we calculate the two functions in series using first N layers to calculate G and then
M more layers to calculate the final function f = g − ℎ.

We can also generalize this result for functions with other output dimensions.

Theorem 3.27. Any function f ∶ ℝdin → ℝdout of the form f (x) = (f1(x),… , fdout ) with each fi of the
form:

f i(x) = gi(x) − ℎi(x) with gi(x) = max
�<N i

{gi�(x)} ℎi(x) = max
�<M i

{ℎi�(x)} (25)

can be calculated by a ReLU network of width din + dout and depth maxi=1,...,dout (N
i +M i).

Proof. Following the same setup used in the proof of the previous theorem, we use the strategy of keeping d
nodes in each layer reserved to pass along the original values imputed in the network, and use an additional
node for the computation of each fi. This way, the components of f are calculated in parallel until the
longest (meaning the one with the largest value for (Mi +Ni)) finishes computing. The resulting network
has width din + dout and depth maxi=(1,...,dout)(Ni +Mi).

As in the previous theorem, it is also possible to decrease the depth of the network tomaxi=(1,...,dout)(Ni,Mi)
at the cost of increasing the width to din + 2dout. Once again, this does not change the computational cost
of the network if it is of the form described in the proof.

Consider the following concept:
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Definition 3.28. Let wdin,doutmin be defined as

wdin,doutmin ∶= min{w|for anyf ∶ ℝdin → ℝdout , � > 0∃ a network 
with width( ) = w such that |f − f | < �}.

This leads to a rephrasing of the previous theorem:
Corollary 3.29. For any din, dout ≥ 1 we have that

wdin,doutmin ≤ din + dout. (26)

An interesting theorem from [HS17] provides a lower bound to the situation above:
Theorem 3.30. For any din, dout ≥ 1 we have that

wdin,doutmin ≥ din + 1. (27)

In other words, if a ReLU network has all its hidden layers with at most din nodes, then there exists some
function f ∶ ℝdin → ℝdout and some � > 0 such that no matter how the weights and biases are adjusted,
|f −f | > �. This has very direct consequences to the implementation of ReLU networks: if one wishes to
create the most versatile network possible, then at least one of its layers must have din + 1 nodes. However,
since the input space of the functions approximated by neural networks tend to be very big, this at times can
only be achieved at a very large computational cost.

4 Implementation and Case Study of Efficiency
For the final section of this expository paper, we include a case study of the most classic example of neural
network implementation: the MNIST database of handwritten digits. The MNIST database is composed
of 70,000 pictures, each of which is made of a 28 by 28 grid of black and white pixels. Each pixel stores
a value between 0 and 1, corresponding to the shade of that region, with 0 indicating a completely white
square, and 1 indicating a completely black square2.

Our objective, then, is to create a neural network which is able to classify what type of digit is repre-
sented in the picture. We may understand this as trying to approximate some function f ∶ I784 → I10,
which receives 784 numbers between 0 and 1 as inputs, and returns 10 numbers, each corresponding to the
likelihood of the picture relating to a certain number. After the network outputs these 10 numbers, we take
the digit corresponding to the largest of these values as the classification of our network. This is a great
application of neural networks, as it would be most likely impossible to write down f explicitly.

4.1 Procedure
In order to experiment around some parameters such as depth, width and learning rate of the network,
we use a Python 3.6 implementation of the algorithm presented at the end of the first chapter of [Nie18]
(again, available at: http://neuralnetworksanddeeplearning.com/). In this implementation, addi-
tional techniques which have not been explored in this paper have been employed, most importantly, an
instance of backpropagation called Stochastic Gradient Descent. This technique aims to ensure that the
training method is carried out in a randomly uniform way across the training data, thus making it less likely
that the network will specialize in a specific case (say, pictures of the digit 0) and perform badly on others
(say, any other digit).

In summary, we divide the 70,000 pictures into a group of 10,000, called the test set, and another of
60,000, called the training set. We also divide the training process into what are called epochs. In each
epoch, we randomly select a given number (called mini-batch size) of pictures from the training set. We
then go through the process of backpropagation for these pictures and finally update the network by adding
up all the contributions of the individual pictures to the gradient of the cost function, thus ending this epoch.
We repeat this process a given number of times until our training is done. After this step, we test the network
on all the 10,000 pictures we separated in the test set without updating the network for these pictures. This
separation is made to ensure that our network is not memorizing the desired inputs of the training set but
rather is able to generalize to results outside of this set. By keeping the two sets separated, we make sure
that our test is independent of the training data used to shape the network.

For all networks in this section, the mini-batch size used was composed of 10 training images.
2The original database was composed of pictures which were 20 by 20 pixels and only allowed values of shades to be either 0 or

1. However, when re-scaling the pictures to be 28 by 28 pixels, different shades were allowed, as to better preserve the information
contained in the pictures.
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4.2 Comparison Results
4.2.1 Learning Rate

In order to test how the learning rate of a network affects its accuracy, we used a structure of two hidden
layers with 30 nodes each, and varied the learning rate in regular steps. The results obtained are presented
in Figure 2, where each point represents a network trained for 20 epochs.

Figure 2: Learning rate trials using a network with two hidden layers of 30 nodes each. The number of
successes is based on a testing sample of 10000 pictures.

This graph can be roughly separated into two regions: low learning rates; and larger learning rates. In
this first region, located at the left side of the graph, we can notice an increase in accuracy as the learning
rate goes up. However, after a certain threshold, we reach the second region of the graph, where points
appear more spread out, and accuracy seems to have stagnated when seen in relation to the learning rate.

More will be said about the influence of Learning Rates to the accuracy of the network when we discuss
depth.

4.2.2 Width

In an analogous fashion to the previous section, we fix depth and learning rate, and vary the width of the
hidden layers in order to examine what relationship this parameter has with the final network accuracy. In
Figure 3, results are shown for networks of 2 hidden layers and learning rate of 3. These results show a
very clear relationship between accuracy and width of the network, where increasing the number of nodes
in each layer increases the number of successes. In the context of ’thinner’ networks, adding nodes to the
layers makes a very big difference, but this gain diminished as the network grows bigger.
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Figure 3: Width trials using a network with two hidden layers with the same number of (varied) widths and
learning rate of 3. The number of successes is based on a testing sample of 10000 pictures.

At first sight, this might lead the reader to conclude that in any context having wider networks means
having better results. However, when data from Figure 3 is extended to include considerably wider networks,
results are less encouraging.

Figure 4: Width trials using a network with two hidden layers with the same number of (varied) widths and
learning rate of 3. The number of successes is based on a testing sample of 10000 pictures.

In Figure 4, the accuracy of the networks does increase as a function of width, up to roughly about 100
hidden layers. After this threshold, network accuracy varies significantly, in most cases for the worse. This is
because a wider network has many more weights and biases that need to be adjusted, so the learning process
happens more slowly. In this specific case of networks with two hidden layers of width n, 784 inputs and 10
outputs, the number of weights is 784n+n2+10n = n2+794n and the number of biases is n+n+10 = 2n+10
which means that the total number of parameters that need to be adjusted is n2 +796n+10. Because of this
squared dependency on n, larger networks will require many more epochs of training in order to achieve their
full potential. Not only that, but each epoch requires much more computational power in larger networks.
However, the large number of parameters also means that the network is capable of expressing a larger class
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of functions, which is indeed shown when considering networks trained over more epochs. This is shown in
Figure 5, which compares networks with 50, 100 and 200 nodes in each hidden layer across different epochs.

Figure 5: Trials using sigmoid networks with two hidden layers and learning rate of 3 across 50 epochs.
The number of successes is based on a testing sample of 10000 pictures.

As expected, larger networks require more training epochs in order to achieve their full potential, but
when this is obtained, they indeed perform better than smaller networks. In this specific case, however, the
gain is noticeable, but not overwhelming, while the required time to train larger networks is, indeed much
larger. A zoomed in version of Figure 5 is presented in Figure 6 for readability purposes.

Figure 6: Trials using sigmoid networks with two hidden layers and learning rate of 3 across 50 epochs.
The number of successes is based on a testing sample of 10000 pictures.

4.2.3 Depth

"Deep Learning" is a term which became popular in machine learning over the past few years, with many
news articles praising successful applications of the method. This technique simply means that many layers
are being used in a neural network (although what qualifies as "many" is not always well defined). Although

20



Leonardo Ferreira Guilhoto An Overview Of Artificial Neural Networks for Mathematicians

this method has indeed been incredibly successful in many important applications, the reader should not
be mislead into believing that more layers always means better accuracy. For instance, consider the results
exhibited in Figure 7, where networks with different depth were compared.

Figure 7: Networks used had a learning rate of 3 and sigmoid activation function. The number of successes
is based on a testing sample of 10000 pictures.

After a certain point, having more layers in the network dramatically decreases its accuracy, to a point
where it converges to 10%, which is equivalent to just randomly guessing what digit is in the picture! A
reasonable thought to have after reading the previous section is to conclude that this is because the network
is larger, and therefore requires more epochs of training in order to achieve its true potential. However,
further examination shows that even after 40 epochs, the network does not show any sign of improvement.
However, observe in Figure 8 what happens when we lower the learning rate of the network.

Figure 8: Trials for sigmoid networks of 16 hidden layers with 20 nodes each. The number of successes is
based on a testing sample of 10000 pictures.

Each curve presented in Figure 8 relates to a different region of influence of the learning rate. In the
first one, represented by 0.3, the learning rate is appropriate, and, given enough training epochs, results in a
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successful network. In the second one, represented by 3.0, the learning rate is so big that the steps taken by
the gradient descent technique completely skip over any minimum of the cost function, turning the network’s
output into random guesses. The final one, represented by 1.0, is an intermediary region, where steps are
small enough that the outcome of the network is definitely better than random guesses, but still too big,
as to make the network oscillate intensely across one or more minimums of the cost function, resulting in
unreliability.

Why does the deeper network require a smaller learning rate in order to function properly when compared
to shallower networks? The answer relies on the different types of operations carried out when shaping
the network’s function: in shallow but wide networks, the primary operations influencing the outcome are
affine combinations, which are determined by the weights and biases across layers; in deep but thin networks
function composition is the key, which means that each individual weight (specially closer to the input layer)
has a very large influence on the outcome of the network. As a result, in deeper networks we need smaller
increments to the gradient descent in order to finely tune it to the desired dataset.
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Appendix A Data
Since the algorithm employed used the stochastic gradient descent technique and is, therefore, partially
random, the data displayed in the graphs of Section 4 is detailed below for the sake of completeness. In
order to retain compactness, the following abbreviations are used: L.R. (Learning Rate); C.G. (Correct
Guesses); E.C. (Epochs Completed); Wd. (Width); Dp. (Depth).

Table 1: Data for Figure 2

L.R. C.G.
1.00 9430
1.04 9431
1.08 9439
1.12 9455
1.16 9459
1.20 9442
1.24 9439
1.28 9451
1.32 9473
1.36 9471
1.40 9500
1.44 9476
1.48 9476
1.52 9433
1.56 9464
1.60 9438
1.64 9420
1.68 9436
1.72 9473
1.76 9473

L.R. C.G.
1.80 9469
1.84 9480
1.88 9479
1.92 9479
1.96 9489
2.00 9518
2.04 9489
2.08 9532
2.12 9513
2.16 9453
2.20 9475
2.24 9528
2.28 9503
2.32 9517
2.36 9502
2.40 9525
2.44 9478
2.48 9498
2.52 9450
2.56 9461

L.R. C.G.
2.60 9513
2.64 9509
2.68 9505
2.72 9468
2.76 9519
2.80 9493
2.84 9507
2.88 9487
2.92 9496
2.96 9486
3.00 9484
3.04 9489
3.08 9534
3.12 9501
3.16 9555
3.20 9499
3.24 9464
3.28 9514
3.32 9493
3.36 9524

L.R. C.G.
3.40 9506
3.44 9508
3.48 9500
3.52 9500
3.56 9462
3.60 9514
3.64 9480
3.68 9477
3.72 9496
3.76 9481
3.80 9500
3.84 9498
3.88 9507
3.92 9519
3.96 9483
4.00 9488
4.04 9505
4.08 9477
4.12 9503
4.16 9474

L.R. C.G.
4.20 9530
4.24 9475
4.28 9542
4.32 9476
4.36 9525
4.40 9476
4.44 9493
4.48 9489
4.52 9458
4.56 9452
4.60 9511
4.64 9479
4.68 9477
4.72 9515
4.76 9522
4.80 9527
4.84 9495
4.88 9499
4.92 9450
4.96 9519

Table 2: Data for figures 3 and 4

Wd. C.G.
10 9126
11 9164
12 9227
13 9225
14 9264
15 9278
16 9309
17 9405
18 9424
19 9354
20 9402
21 9401
22 9384
23 9451
24 9441
25 9460

Wd. C.G.
26 9507
27 9424
28 9493
29 9498
30 9555
31 9509
32 9520
33 9548
34 9527
35 9558
36 9532
37 9514
38 9536
39 9532
40 9534
41 9500

Wd. C.G.
42 9547
43 9619
44 9569
45 9583
46 9600
47 9568
48 9543
49 9575
50 9591
51 9563
52 9606
53 9573
54 9582
55 9604
56 9589
57 9608

Wd. C.G.
58 9615
59 9578
60 9632
65 9620
70 9625
75 9628
80 9558
85 9571
90 9638
95 9607
100 9641
105 9660
110 7799
115 7782
120 8561
125 9647

Wd. C.G.
130 7793
135 8746
140 8783
145 7901
150 9633
155 7859
160 8569
165 7119
170 9680
175 6017
180 7208
185 7880
190 8811
195 7268
200 8860
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Table 3: Data for figures 5 and 6

Wd. E.C. C.G.
50 1 9148
50 2 9264
50 3 9303
50 4 9399
50 5 9443
50 6 9426
50 7 9478
50 8 9486
50 9 9507
50 10 9554
50 11 9513
50 12 9566
50 13 9520
50 14 9551
50 15 9546
50 16 9552
50 17 9550
50 18 9572
50 19 9573
50 20 9543
50 21 9562
50 22 9546
50 23 9574
50 24 9597
50 25 9565
50 26 9581
50 27 9568
50 28 9586
50 29 9597
50 30 9591
50 31 9571
50 32 9584
50 33 9620
50 34 9584
50 35 9593
50 36 9604
50 37 9604
50 38 9597
50 39 9603
50 40 9595
50 41 9596
50 42 9610
50 43 9600
50 44 9604
50 45 9596
50 46 9595
50 47 9610
50 48 9617
50 49 9595
50 50 9614

Wd. E.C. C.G.
100 1 8151
100 2 9223
100 3 9399
100 4 9412
100 5 9476
100 6 9539
100 7 9526
100 8 9545
100 9 9528
100 10 9579
100 11 9601
100 12 9575
100 13 9592
100 14 9630
100 15 9570
100 16 9635
100 17 9618
100 18 9660
100 19 9644
100 20 9640
100 21 9599
100 22 9630
100 23 9657
100 24 9608
100 25 9637
100 26 9630
100 27 9672
100 28 9660
100 29 9662
100 30 9659
100 31 9648
100 32 9671
100 33 9650
100 34 9677
100 35 9664
100 36 9654
100 37 9663
100 38 9676
100 39 9664
100 40 9667
100 41 9671
100 42 9674
100 43 9673
100 44 9661
100 45 9661
100 46 9665
100 47 9666
100 48 9659
100 49 9665
100 50 9675

Wd. E.C. C.G.
200 1 5527
200 2 6757
200 3 6904
200 4 7645
200 5 7559
200 6 7683
200 7 7605
200 8 7685
200 9 8102
200 10 7882
200 11 8036
200 12 8003
200 13 7968
200 14 8098
200 15 8167
200 16 8022
200 17 8153
200 18 8138
200 19 7973
200 20 8222
200 21 8193
200 22 8718
200 23 8705
200 24 8739
200 25 8878
200 26 8831
200 27 8865
200 28 8815
200 29 9102
200 30 8880
200 31 9078
200 32 9105
200 33 9097
200 34 9114
200 35 9661
200 36 9675
200 37 9673
200 38 9686
200 39 9717
200 40 9686
200 41 9692
200 42 9676
200 43 9699
200 44 9682
200 45 9701
200 46 9684
200 47 9725
200 48 9700
200 49 9710
200 50 9702
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Table 4: Data for Figure 7

Wd. Dp. C.G.
20 1 8363
20 2 9400
20 3 9400
20 4 9349
20 5 9318
20 6 9414
20 7 9306
20 8 9291
20 9 9198
20 10 8750
20 11 6172
20 12 5213
20 13 1009
20 14 1032
20 15 1135
20 16 1135
20 17 1135
20 18 1010

Wd. Dp. C.G.
30 1 7569
30 2 9461
30 3 9521
30 4 9447
30 5 9435
30 6 9430
30 7 9463
30 8 9315
30 9 9376
30 10 9286
30 11 9059
30 12 9087
30 13 8272
30 14 982
30 15 1135
30 16 1135
30 17 1032
30 18 974

Wd. Dp. C.G.
40 1 8367
40 2 9570
40 3 9543
40 4 9562
40 5 9468
40 6 9476
40 7 9502
40 8 9460
40 9 9380
40 10 9316
40 11 9041
40 12 9049
40 13 8630
40 14 1677
40 15 1135
40 16 1028
40 17 980
40 18 892

Table 5: Data for Figure 8

L.R. E.C. C.G.
0.3 1 1010
0.3 2 958
0.3 3 1135
0.3 4 1135
0.3 5 1135
0.3 6 1132
0.3 7 958
0.3 8 1028
0.3 9 2134
0.3 10 2076
0.3 11 3134
0.3 12 3838
0.3 13 3902
0.3 14 4826
0.3 15 5390
0.3 16 5486
0.3 17 6050
0.3 18 6315
0.3 19 6517
0.3 20 7450
0.3 21 7792
0.3 22 7831
0.3 23 7970
0.3 24 8440
0.3 25 8620
0.3 26 8765
0.3 27 8808
0.3 28 8951
0.3 29 8959
0.3 30 8971

L.R. E.C. C.G.
0.3 31 8879
0.3 32 9026
0.3 33 9077
0.3 34 8998
0.3 35 9056
0.3 36 9113
0.3 37 9091
0.3 38 9161
0.3 39 8974
0.3 40 9099
1.0 1 1135
1.0 2 1009
1.0 3 1009
1.0 4 1857
1.0 5 3780
1.0 6 3812
1.0 7 5384
1.0 8 5581
1.0 9 6028
1.0 10 5893
1.0 11 6833
1.0 12 7384
1.0 13 7601
1.0 14 8513
1.0 15 6418
1.0 16 6551
1.0 17 3004
1.0 18 3396
1.0 19 5510
1.0 20 3105

L.R. E.C. C.G.
1.0 21 5877
1.0 22 1770
1.0 23 3740
1.0 24 6104
1.0 25 5450
1.0 26 6489
1.0 27 5792
1.0 28 3693
1.0 29 3368
1.0 30 5872
1.0 31 2021
1.0 32 2080
1.0 33 2091
1.0 34 2082
1.0 35 2110
1.0 36 2145
1.0 37 2046
1.0 38 2079
1.0 39 1529
1.0 40 2090
3.0 1 892
3.0 2 980
3.0 3 1028
3.0 4 1684
3.0 5 2017
3.0 6 975
3.0 7 1135
3.0 8 2998
3.0 9 1135
3.0 10 958

L.R. E.C. C.G.
3.0 11 1135
3.0 12 1028
3.0 13 1028
3.0 14 1028
3.0 15 1028
3.0 16 1135
3.0 17 1010
3.0 18 982
3.0 19 1135
3.0 20 1010
3.0 21 1135
3.0 22 1135
3.0 23 1135
3.0 24 1135
3.0 25 1028
3.0 26 980
3.0 27 1010
3.0 28 1028
3.0 29 1032
3.0 30 1028
3.0 31 1009
3.0 32 974
3.0 33 1135
3.0 34 1135
3.0 35 1135
3.0 36 1135
3.0 37 958
3.0 38 1028
3.0 39 1009
3.0 40 1135
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