Unliversita di Camerino

1336

Test Generation — Finite State Models J

Andrea Polini

Advanced Topics on Software Engineering — Software Testing
MSc in Computer Science
University of Camerino

(ATSE) Test Generation — Finite State Models CS@UNICAM 1/29

|
Models in the Design Phase

Design Phase

» Between the requirements phase and the implementation phase “The last you
start the first you finish”

» Produce models in order to clarify requirements and to better formalize them
» Models can be the source of test set derivation strategies

Various modeling notations for behavioral specification of a software system have
been proposed. Which to use depends on the system you are developing, and the
aspects you would like to highlight:

@ Finite State Machines

@ Petri Nets

@ Statecharts

@ Message sequence charts

(ATSE) Test Generation — Finite State Models CS@UNICAM 2/29

Finite State Machines

A finite state machine is a six-tuple <2", %, 2, qu, 6, 0> where:
> 2" finite set of input symbols
> 2 finite set of output symbols
> 2: finite set of states
> qo € 2: initial state
» J: transition function (2 x 2" — 2)
» (' output function (2 x 2" — %)

Many possible extensions:
@ Transition and output functions can consider strings
@ Definiton of the set of accepting states .7 C 2
@ Non determinism

(ATSE) Test Generation — Finite State Models CS@UNICAM 3/29

|
Properties of FSM

» Completely specified (input enabled)

o V(g€ 2,ac 2).3q; € 2.5(q;,a) = q
» Strongly connected

o Y(qi,q) € 2x 23se X*.0°(q;,8) = g
» V-equivalence (distinguishable)

o Let M; and M, two FSMs. Let ¥ denote a set of non-empty string
on the input alphabet .27, and q; € 2 and g; € 2». g; and g; are
considered 7" — equivalent if 01(q;, s) = 02(q;, s). If g; and g; are
¥ — equivalent given any set ¥ C 2°* than they are said to be

equivalent (q; = qj). If states are not equivalent they are said to be
distinguishable.

(ATSE) Test Generation — Finite State Models CS@UNICAM 4/29

Properties of FSM....cntd

Useful properties/concepts for test generation...cntd

» Machine equivalence
e My and M, are said to be equivalent if Vg; € 24.3q; € 22.q9, = g
and viceversa.
» k-equivalence
e Let M; and M. two FSMs and q; € 24 and g; € 27 and k € N.
g; and g; are said to be 7 — equivalent if they are ¥ — equivalent
for v ={se X*||s|<k}
» Minimal machine
e an FSM is considered minimal if the number of its states is less
than or equal to any other equivalent FSM

(ATSE) Test Generation — Finite State Models CS@UNICAM 5/29

Conformance Testing

Conformance Testing

Relates to testing of communication protocols. It aims at assessing

that an implementation of a protocol conform to its specification.
Protocols generally specify:

» Control rules (FSM)
» Data rules

Developed techniques are equally applicable when the specification is
refined into an FSM

(ATSE) Test Generation — Finite State Models CS@UNICAM 6/29

|
The Testing Problem

» Resetinputs (2" = 2 U{Re},and # =% U {null})

» Testing based on requirements checks if the implementation
conforms to the machine on a given requirement.

» The testing problem is reconducted to an equivalence
(nevertheless finite experiments). Is the SUT (IUT) equivalent to
the machine defined during design?

» Fault model for FSM — given a fault model the challenge is to
generate a test set T from a design My where any fault in M; of
the type in the fault model is guaranteed to be revealed when
tested against T

o Operation error (refers to issues with &)

Transfer error (refers to issues with 4)

Extra-state error (refers to issues with 2 and 0)

Missing-state error (refers to issues with 2 and §)

(ATSE) Test Generation — Finite State Models CS@UNICAM 7/29

I
Mutation of FSMs

A mutant of an FMS My is an FSM obtained by introducing one or
more errors one or more times.

» Equivalent mutants: mutants that could not be distinguishable
from the originating machine

M Mut1 Mutz MUt4
))
© © O (0}

Co)
b/1 a/l {a,b/1}
(D) (D
(o) (o)

(ATSE) Test Generation — Finite State Models CS@UNICAM 8/29

|
The Testing Problem

Techniques to measure the goodness of a test set in relation to the
number of errors that it reveals in a given implementation M;.

» N;: total number of first order mutants of the machine M used for
generating tests.

» Ng: Number of mutants that are equivalent to M

» N;: Number of mutants that are distinguished by test set T
generated using some test generation method.

» N;: Number of mutants that are not distinguished by T

The fault coverage of a test suite T with respect to a design M is
denoted by FC(T, M) and computed as follows:

FC(T, M) = Number of mutants not distinguished by T /
Number of mutants that are not equivalent to M
= (Nt — Ne — Np)/(Ne — Ne)

(ATSE) Test Generation — Finite State Models CS@UNICAM 9/29

Characterization Set

Let M =<2, %, 2,q1,0, 0> an FSM that is minimal and complete. A
characterization set for M, denoted as 7/, is a finite set of input
sequences that distinguish the behaviour of any pair of states in M.

(ATSE) Test Generation — Finite State Models CS@UNICAM 10/29

-]
K-equivalence partitions

The notion of J# — equivalence leads to the notion of
J — equivalence partitions.

Given an FSM a ¥ — equivalence partition of 2, denoted by %, is a

collection of n finite sets of states denoted as X4,, Xy,, ..., Lk, Such
that:

> Uimi..nZk, = 2
> States in X, for 1 <j < nare % — equivalent

> if g € Xy, and gm € Xy, for i # j, then g, and g, must be
J — distinguishable

(ATSE) Test Generation — Finite State Models CS@UNICAM 11/29

K-equivalence partitions

The notion of J# — equivalence leads to the notion of
J — equivalence partitions.

Given an FSM a ¥ — equivalence partition of 2, denoted by %, is a
collection of n finite sets of states denoted as X4,, Xy,, ..., Lk, Such
that:

> Uimi..nZk, = 2
> States in X, for 1 <j < nare % — equivalent

> if g € Xy, and gm € Xy, for i # j, then g, and g, must be
J — distinguishable

J — equivalence partitions can be derived using an iterative approach
for increasing number of ¢

(ATSE) Test Generation — Finite State Models CS@UNICAM 11/29

Let’s use the intuition

Let’s build K-equivalence partitions for the previous FSM |

(ATSE) Test Generation — Finite State Models CS@UNICAM 12/29

How to derive # from K-equivalence partitions

@ Let M an FSM for which P = {Ps, Pa, ..., Py} is the set of k-equivalence partition.
W =0
@ Repeat the steps (a) through (d) given below for each pair of states (g, g;), i # J,
in M
(@) Find r (1 <r < nsuch that the states in pair (g;, g;) belong to the same
group in P, but notin P..¢. If such an r is found then move to step (b)
otherwise we find an n € 2" such that ¢(qi,n) # €(q;,n), set
W =% U{n} and continue with the next available pair of states. The
length of the minimal distinguishing sequence for (qi, g;) is r + 1.
(b) Initialize z = €. Let p; = g; and p» = q; be the current pair of states.
Execute steps (i) through (iii) given below form=r,r —1,...;1
(i) Find an input symbol 7 in Pp, such that ¢(p1, n) # 4(p2, n). In case
there is more than one symbol that satisfy the condition in this step,
then select one arbitrarily.
(i) setz=2zn
(ili) set pr = d(pr,m) and p2 = 6(p2,n)
(c) Findann e 2 such that &(p1,n) # O(p2,n). Set z = zn
(d) The distinguishing sequence for the pair (q;, q;) is the sequence z. Set
W =wU{z}

(ATSE) Test Generation — Finite State Models CS@UNICAM 13/29

Example

@ Termination of the /" — procedure guarantees the generation of
distinguishing sequence for each pair.

(ATSE) Test Generation — Finite State Models CS@UNICAM 14/29

Example

@ Termination of the /" — procedure guarantees the generation of

distinguishing sequence for each pair.

(ATSE)

<

X

0(Si, x)

o(S;, x)

BAWWMNOMNON= 22O

o harwoabdowOnmO

baaa
aa
a
a
aa
a
a
a
a
aaa

1

- OO0 O 0000 O0o

0

QO = = = el

Test Generation — Finite State Models

CS@UNICAM

14/29

I
The W-Method

The W-Method aims at deriving a test set to check the implementation
(Implementation Under Test - IUT) of an FSM model

(ATSE) Test Generation — Finite State Models CS@UNICAM 15/29

The W-Method

The W-Method aims at deriving a test set to check the implementation
(Implementation Under Test - IUT) of an FSM model

» M is completely specified, minimal, connected, and deterministic
» M starts in a fixed initial states

» M can be reset to the initial state. A null output is generated by
the reset

» M and IUT have the same input alphabet

(ATSE) Test Generation — Finite State Models CS@UNICAM 15/29

|
W-Method steps

Givenan FSM .7 =< 2", %, 2, qo, 9, 0 > the W-method consists of
the following steps:

@ Estimate the maximum number of states in the correct design
© Construct the characterization set # for the given machine .#

© Construct the testing tree for .# and determine the transition
cover set &

© Construct set %
@ . % isthe desired test set

(ATSE) Test Generation — Finite State Models CS@UNICAM 16/29

Computation of the transition cover set

2 - transition cover set

Let g; and g;, / # j be two states of .. & consists of sequences s - x
s.t. (90, 8) = qiNd(qi, x) = qgjforse 27 Ax € 2. The set can be
constructed using the testing tree for .Z.

(ATSE) Test Generation — Finite State Models CS@UNICAM 17/29

Computation of the transition cover set

2 - transition cover set

Let g; and g;, / # j be two states of .. & consists of sequences s - x
s.t. (90, 8) = qiNd(qi, x) = qgjforse 27 Ax € 2. The set can be
constructed using the testing tree for .Z.

v

Testing tree

The testing tree for an FSM .# can be constructed as follows:

@ State qp is the root of the tree
© Suppose that the testing tree has been constructed till level k. The
(k + 1) level is built as follows:

e Select a node n at level k. If n appears at any level from 1 to kK — 1
then nis a leaf node. Otherwise expand it by adding branch from
node nto a new node mif (n, x) = mfor x € 2". This branch is
labeled as x.)

(ATSE) Test Generation — Finite State Models CS@UNICAM 17/29

-]
Constructing 2

The set &

Suppose number of states estimates to be m for the IUT, and nin the
specification m > n. We compute & as:

F = (ZO-W)VU(L YO A U(ZmN YU W)

(ATSE) Test Generation — Finite State Models CS@UNICAM 18/29

|
Deriving a testset— & - &

(ATSE) Test Generation — Finite State Models CS@UNICAM 19/29

Deriving a testset— & - &

Try sequences:
» baaaaaa

» baaba

(ATSE) Test Generation — Finite State Models CS@UNICAM 19/29

-method fault detection rationale

> A test case generated by the # — method is of the form r - s
wherere Zandse#

e Why can we detect operation errors?
e Why can we detect transfer errors?

2 ={e, a, b, bb, ba, bab, baa, baab, baaa, baaab, baaaa}
W = {a, aa, aaa, baaa}

(ATSE) Test Generation — Finite State Models CS@UNICAM 20/29

-method fault detection rationale

> A test case generated by the # — method is of the form r - s
wherere Zandse#

e Why can we detect operation errors?
e Why can we detect transfer errors?

2 ={e, a, b, bb, ba, bab, baa, baab, baaa, baaab, baaaa}
W = {a, aa, aaa, baaa}

(ATSE) Test Generation — Finite State Models CS@UNICAM 20/29

-method fault detection rationale

> A test case generated by the # — method is of the form r - s
wherere Zandse#

e Why can we detect operation errors?
e Why can we detect transfer errors?

2 ={e, a, b, bb, ba, bab, baa, baab, baaa, baaab, baaaa}
W = {a, aa, aaa, baaa}

(ATSE) Test Generation — Finite State Models CS@UNICAM 20/29

The partial 7 — method (aka Wp — method)

Wp — method

Main characteristics:
» |t considers minimal, complete and connected FSM
» is inspired by the # — method it generates smaller test sets

> uses a derivation phase split in two phases that make use of state
identification sets %; instead of characterization set #

» uses the state cover set (.¥) to derive the test set.

(ATSE) Test Generation — Finite State Models CS@UNICAM 21/29

Identification Set and State Cover Set

Identification Set
The Identification Set is associated to each state g € 2 of an FSM.

An Identification set for state q; € 2, where | 2| = n, is denoted by #;
and has the following properties:

Q@ 7, C#per1<i<n
Q Jjs1<j<nAse¥NO(q;,s)# 0(qs)
© No subset of #; satisfies property 2.

(ATSE) Test Generation — Finite State Models CS@UNICAM 22/29

Identification Set and State Cover Set

Identification Set

The Identification Set is associated to each state g € 2 of an FSM.

An Identification set for state q; € 2, where | 2| = n, is denoted by #;
and has the following properties:

Q@ 7, C#per1<i<n
Q Jjs1<j<nAse¥NO(q;,s)# 0(qs)
© No subset of #; satisfies property 2.

State Cover Set

The state cover set is a nonempty set of sequences (& C 27 s.t.
> Vg € 23re . ss.t.é(qo,r) = q;

From the definition it is evident that .7 C &

| A\

v

(ATSE) Test Generation — Finite State Models CS@UNICAM 22/29

Exercise

Compute the State cover set and the identification set for the usual
automaton

(ATSE) Test Generation — Finite State Models CS@UNICAM 23/29

The # p procedure (assuming m = n)

The test set derived using the %' p — method is given by the union to
two test sets .77, % calculated according to the following procedure:

@ Compute sets &2, .7, #/, and ¥#;

Q@ =5

Q LetW = {1, Wo,.... %5}

Q LetR={r,rn,....nkfwhereR =2 — . andrj € Riss.t.
(Qo, 1) = Qi

Q %=RaW=U~L ({n} #)where #; c W is the state
identification set for state g; (@ is the partial string concatenation
operator)

(ATSE) Test Generation — Finite State Models CS@UNICAM 24/29

W p — method rationale

@ Phase 1: test are of the form uv where u € .¥ and v € #'. Reach
each state than check if it is distinguishable from another one

@ Phase 2: test covers all the missing transitions and then check if
the reached state is different from the one specified in the model

(ATSE) Test Generation — Finite State Models CS@UNICAM 25/29

|
p — method in practice

W = {a, aa, aaa, baaa}

P ={e, a, b, bb, ba, bab, baa, baab, baaa, baaab, baaaa}
& = {e, b, ba, baa, baaa}

W, = {baaa, aa, a}, #» = {baaa, aa, a}, #3 = {aa, a}
W4 = {aaa, a}, #s = {aaa, a}

(ATSE) Test Generation — Finite State Models CS@UNICAM 26/29

|
p — method in practice

W = {a, aa, aaa, baaa}

P ={e, a, b, bb, ba, bab, baa, baab, baaa, baaab, baaaa}
& = {e, b, ba, baa, baaa}

W, = {baaa, aa, a}, #» = {baaa, aa, a}, #3 = {aa, a}
W4 = {aaa, a}, #s = {aaa, a}

(ATSE) Test Generation — Finite State Models CS@UNICAM 26/29

|
p — method in practice

W = {a, aa, aaa, baaa}

P ={e, a, b, bb, ba, bab, baa, baab, baaa, baaab, baaaa}
& = {e, b, ba, baa, baaa}

W, = {baaa, aa, a}, #» = {baaa, aa, a}, #3 = {aa, a}
W4 = {aaa, a}, #s = {aaa, a}

(ATSE) Test Generation — Finite State Models CS@UNICAM 26/29

Is it phase 2 needed?

Let’s consider the following FSM:

ajl

Now introduce an operation error or a transfer error on a “c” transition

(ATSE) Test Generation — Finite State Models CS@UNICAM 27/29

The # p procedure (assuming m > n)

(O
Modify the derivation of the two sets as follows:
> S =Y -Zwhere Z =2 [m—-n|- ¥
> 7=(R-Z[m—-n))eW
o letS=R-Z[m—n={s|s=r-ust.reRAue Z[m-n|}
then 7 = S W = Use»(S- #1) where 6(qo,) = 6(6(qo, r),u) = 9 |

(ATSE) Test Generation — Finite State Models CS@UNICAM 28/29

Possible alternatives to W-method

(O
» W-method high effectiveness in bugs identification

» High number of generated tests

To solve this issue alternative solutions have been proposed possibly
reducing effectiveness:

@ UIO-sequence method
@ Distinguishing signatures

(ATSE) Test Generation — Finite State Models CS@UNICAM 29/29

