
Test Generation – Finite State Models

Andrea Polini

Advanced Topics on Software Engineering – Software Testing
MSc in Computer Science

University of Camerino

(ATSE) Test Generation – Finite State Models CS@UNICAM 1 / 29

Models in the Design Phase

Design Phase

I Between the requirements phase and the implementation phase “The last you
start the first you finish”

I Produce models in order to clarify requirements and to better formalize them
I Models can be the source of test set derivation strategies

Various modeling notations for behavioral specification of a software system have
been proposed. Which to use depends on the system you are developing, and the
aspects you would like to highlight:

Finite State Machines

Petri Nets

Statecharts

Message sequence charts

(ATSE) Test Generation – Finite State Models CS@UNICAM 2 / 29

Finite State Machines

FSM
A finite state machine is a six-tuple <X ,Y ,Q,q0, δ,O> where:
I X : finite set of input symbols
I Y : finite set of output symbols
I Q: finite set of states
I q0 ∈ Q: initial state
I δ: transition function (Q ×X → Q)
I O: output function (Q ×X → Y)

Many possible extensions:

Transition and output functions can consider strings

Definiton of the set of accepting states F ⊆ Q

Non determinism

(ATSE) Test Generation – Finite State Models CS@UNICAM 3 / 29

Properties of FSM

Useful properties/concepts for test generation
I Completely specified (input enabled)

∀(qi ∈ Q,a ∈X).∃qj ∈ Q.δ(qi ,a) = qj

I Strongly connected
∀(qi ,qj) ∈ Q ×Q.∃s ∈ X ∗.δ∗(qi , s) = qj

I V-equivalence (distinguishable)
Let M1 and M2 two FSMs. Let V denote a set of non-empty string
on the input alphabet X , and qi ∈ Q1 and qj ∈ Q2. qi and qj are
considered V − equivalent if O1(qi , s) = O2(qj , s). If qi and qj are
V − equivalent given any set V ⊆X + than they are said to be
equivalent (qi ≡ qj). If states are not equivalent they are said to be
distinguishable.

(ATSE) Test Generation – Finite State Models CS@UNICAM 4 / 29

Properties of FSM....cntd

Useful properties/concepts for test generation...cntd
I Machine equivalence

M1 and M2 are said to be equivalent if ∀qi ∈ Q1.∃qj ∈ Q2.qi ≡ qj
and viceversa.

I k-equivalence
Let M1 and M2 two FSMs and qi ∈ Q1 and qj ∈ Q1 and k ∈ N.
qi and qj are said to be K − equivalent if they are V − equivalent
for V = {s ∈ X+| | s |≤ k}

I Minimal machine
an FSM is considered minimal if the number of its states is less
than or equal to any other equivalent FSM

(ATSE) Test Generation – Finite State Models CS@UNICAM 5 / 29

Conformance Testing

Conformance Testing
Relates to testing of communication protocols. It aims at assessing
that an implementation of a protocol conform to its specification.
Protocols generally specify:
I Control rules (FSM)
I Data rules

Developed techniques are equally applicable when the specification is
refined into an FSM

(ATSE) Test Generation – Finite State Models CS@UNICAM 6 / 29

The Testing Problem

FSM and Testing
I Reset inputs (X = X ∪ {Re}, and Y = Y ∪ {null})
I Testing based on requirements checks if the implementation

conforms to the machine on a given requirement.
I The testing problem is reconducted to an equivalence

(nevertheless finite experiments). Is the SUT (IUT) equivalent to
the machine defined during design?

I Fault model for FSM – given a fault model the challenge is to
generate a test set T from a design Md where any fault in Mi of
the type in the fault model is guaranteed to be revealed when
tested against T

Operation error (refers to issues with O)
Transfer error (refers to issues with δ)
Extra-state error (refers to issues with Q and δ)
Missing-state error (refers to issues with Q and δ)

(ATSE) Test Generation – Finite State Models CS@UNICAM 7 / 29

Mutation of FSMs

Mutant
A mutant of an FMS Md is an FSM obtained by introducing one or
more errors one or more times.
I Equivalent mutants: mutants that could not be distinguishable

from the originating machine

(ATSE) Test Generation – Finite State Models CS@UNICAM 8 / 29

The Testing Problem

Fault coverage
Techniques to measure the goodness of a test set in relation to the
number of errors that it reveals in a given implementation Mi .
I Nt : total number of first order mutants of the machine M used for

generating tests.
I Ne: Number of mutants that are equivalent to M
I Nf : Number of mutants that are distinguished by test set T

generated using some test generation method.
I Nl : Number of mutants that are not distinguished by T

The fault coverage of a test suite T with respect to a design M is
denoted by FC(T ,M) and computed as follows:

FC(T ,M) = Number of mutants not distinguished by T /
Number of mutants that are not equivalent to M

= (Nt − Ne − Nf)/(Nt − Ne)

(ATSE) Test Generation – Finite State Models CS@UNICAM 9 / 29

Characterization Set

Let M =<X ,Y ,Q,q1, δ,O> an FSM that is minimal and complete. A
characterization set for M, denoted as W , is a finite set of input
sequences that distinguish the behaviour of any pair of states in M.

(ATSE) Test Generation – Finite State Models CS@UNICAM 10 / 29

K-equivalence partitions

The notion of K − equivalence leads to the notion of
K − equivalence partitions.

Given an FSM a K − equivalence partition of Q, denoted by Pk , is a
collection of n finite sets of states denoted as Σk1 ,Σk2 , ...,Σkn such
that:
I ∪i=1...nΣKi = Q

I States in Σkj , for 1 ≤ j ≤ n are K − equivalent
I if ql ∈ Σki and qm ∈ Σkj , for i 6= j , then ql and qm must be

K − distinguishable

K − equivalence partitions can be derived using an iterative approach
for increasing number of K

(ATSE) Test Generation – Finite State Models CS@UNICAM 11 / 29

K-equivalence partitions

The notion of K − equivalence leads to the notion of
K − equivalence partitions.

Given an FSM a K − equivalence partition of Q, denoted by Pk , is a
collection of n finite sets of states denoted as Σk1 ,Σk2 , ...,Σkn such
that:
I ∪i=1...nΣKi = Q

I States in Σkj , for 1 ≤ j ≤ n are K − equivalent
I if ql ∈ Σki and qm ∈ Σkj , for i 6= j , then ql and qm must be

K − distinguishable

K − equivalence partitions can be derived using an iterative approach
for increasing number of K

(ATSE) Test Generation – Finite State Models CS@UNICAM 11 / 29

Let’s use the intuition

Let’s build K-equivalence partitions for the previous FSM

(ATSE) Test Generation – Finite State Models CS@UNICAM 12 / 29

How to derive W from K-equivalence partitions
1 Let M an FSM for which P = {P1,P2, ...,Pn} is the set of k-equivalence partition.

W = ∅
2 Repeat the steps (a) through (d) given below for each pair of states (qi , qj), i 6= j ,

in M
(a) Find r (1 ≤ r < n such that the states in pair (qi , qj) belong to the same

group in Pr but not in Pr+1. If such an r is found then move to step (b)
otherwise we find an η ∈ X such that O(qi , η) 6= O(qj , η), set
W = W ∪ {η} and continue with the next available pair of states. The
length of the minimal distinguishing sequence for (qi , qj) is r + 1.

(b) Initialize z = ε. Let p1 = qi and p2 = qj be the current pair of states.
Execute steps (i) through (iii) given below for m = r , r − 1, ..., 1

(i) Find an input symbol η in Pm such that G (p1, η) 6= G (p2, η). In case
there is more than one symbol that satisfy the condition in this step,
then select one arbitrarily.

(ii) set z = zη
(iii) set p1 = δ(p1, η) and p2 = δ(p2, η)

(c) Find an η ∈ X such that O(p1, η) 6= O(p2, η). Set z = zη
(d) The distinguishing sequence for the pair (qi , qj) is the sequence z. Set

W = W ∪ {z}
(ATSE) Test Generation – Finite State Models CS@UNICAM 13 / 29

Example

Termination of the W − procedure guarantees the generation of
distinguishing sequence for each pair.

Si Si x O(Si , x) O(Sj , x)

1 2 baaa 1 0
1 3 aa 0 1
1 4 a 0 1
1 5 a 0 1
2 3 aa 0 1
2 4 a 0 1
2 5 a 0 1
3 4 a 0 1
3 5 a 0 1
4 5 aaa 1 0

(ATSE) Test Generation – Finite State Models CS@UNICAM 14 / 29

Example

Termination of the W − procedure guarantees the generation of
distinguishing sequence for each pair.

Si Si x O(Si , x) O(Sj , x)

1 2 baaa 1 0
1 3 aa 0 1
1 4 a 0 1
1 5 a 0 1
2 3 aa 0 1
2 4 a 0 1
2 5 a 0 1
3 4 a 0 1
3 5 a 0 1
4 5 aaa 1 0

(ATSE) Test Generation – Finite State Models CS@UNICAM 14 / 29

The W-Method

The W-Method aims at deriving a test set to check the implementation
(Implementation Under Test - IUT) of an FSM model

Assumptions
I M is completely specified, minimal, connected, and deterministic
I M starts in a fixed initial states
I M can be reset to the initial state. A null output is generated by

the reset
I M and IUT have the same input alphabet

(ATSE) Test Generation – Finite State Models CS@UNICAM 15 / 29

The W-Method

The W-Method aims at deriving a test set to check the implementation
(Implementation Under Test - IUT) of an FSM model

Assumptions
I M is completely specified, minimal, connected, and deterministic
I M starts in a fixed initial states
I M can be reset to the initial state. A null output is generated by

the reset
I M and IUT have the same input alphabet

(ATSE) Test Generation – Finite State Models CS@UNICAM 15 / 29

W-Method steps

Given an FSM M =< X ,Y ,Q,q0, δ,O > the W-method consists of
the following steps:

1 Estimate the maximum number of states in the correct design
2 Construct the characterization set W for the given machine M

3 Construct the testing tree for M and determine the transition
cover set P

4 Construct set Z

5 P ·Z is the desired test set

(ATSE) Test Generation – Finite State Models CS@UNICAM 16 / 29

Computation of the transition cover set

P - transition cover set
Let qi and qj , i 6= j be two states of M . P consists of sequences s · x
s.t. δ(q0, s) = qi ∧ δ(qi , x) = qj for s ∈X ∗ ∧ x ∈X . The set can be
constructed using the testing tree for M .

Testing tree
The testing tree for an FSM M can be constructed as follows:

1 State q0 is the root of the tree
2 Suppose that the testing tree has been constructed till level k . The

(k + 1)th level is built as follows:
Select a node n at level k . If n appears at any level from 1 to k − 1
then n is a leaf node. Otherwise expand it by adding branch from
node n to a new node m if δ(n, x) = m for x ∈X . This branch is
labeled as x .

(ATSE) Test Generation – Finite State Models CS@UNICAM 17 / 29

Computation of the transition cover set

P - transition cover set
Let qi and qj , i 6= j be two states of M . P consists of sequences s · x
s.t. δ(q0, s) = qi ∧ δ(qi , x) = qj for s ∈X ∗ ∧ x ∈X . The set can be
constructed using the testing tree for M .

Testing tree
The testing tree for an FSM M can be constructed as follows:

1 State q0 is the root of the tree
2 Suppose that the testing tree has been constructed till level k . The

(k + 1)th level is built as follows:
Select a node n at level k . If n appears at any level from 1 to k − 1
then n is a leaf node. Otherwise expand it by adding branch from
node n to a new node m if δ(n, x) = m for x ∈X . This branch is
labeled as x .

(ATSE) Test Generation – Finite State Models CS@UNICAM 17 / 29

Constructing Z

The set Z

Suppose number of states estimates to be m for the IUT, and n in the
specification m > n. We compute Z as:
Z = (X 0 ·W)∪ (X ·W)∪ (X 1 ·W) · · · ∪ (X m−1−n ·W)∪ (X m−n ·W)

(ATSE) Test Generation – Finite State Models CS@UNICAM 18 / 29

Deriving a test set – P ·Z

Try sequences:
I baaaaaa
I baaba

(ATSE) Test Generation – Finite State Models CS@UNICAM 19 / 29

Deriving a test set – P ·Z

Try sequences:
I baaaaaa
I baaba

(ATSE) Test Generation – Finite State Models CS@UNICAM 19 / 29

W -method fault detection rationale

I A test case generated by the W −method is of the form r · s
where r ∈P and s ∈ W

Why can we detect operation errors?
Why can we detect transfer errors?

P = {ε,a,b,bb,ba,bab,baa,baab,baaa,baaab,baaaa}
W = {a,aa,aaa,baaa}

(ATSE) Test Generation – Finite State Models CS@UNICAM 20 / 29

W -method fault detection rationale

I A test case generated by the W −method is of the form r · s
where r ∈P and s ∈ W

Why can we detect operation errors?
Why can we detect transfer errors?

P = {ε,a,b,bb,ba,bab,baa,baab,baaa,baaab,baaaa}
W = {a,aa,aaa,baaa}

(ATSE) Test Generation – Finite State Models CS@UNICAM 20 / 29

W -method fault detection rationale

I A test case generated by the W −method is of the form r · s
where r ∈P and s ∈ W

Why can we detect operation errors?
Why can we detect transfer errors?

P = {ε,a,b,bb,ba,bab,baa,baab,baaa,baaab,baaaa}
W = {a,aa,aaa,baaa}

(ATSE) Test Generation – Finite State Models CS@UNICAM 20 / 29

The partial W −method (aka Wp −method)

Wp −method
Main characteristics:
I It considers minimal, complete and connected FSM
I is inspired by the W −method it generates smaller test sets
I uses a derivation phase split in two phases that make use of state

identification sets Wi instead of characterization set W

I uses the state cover set (S) to derive the test set.

(ATSE) Test Generation – Finite State Models CS@UNICAM 21 / 29

Identification Set and State Cover Set

Identification Set
The Identification Set is associated to each state q ∈ Q of an FSM.

An Identification set for state qi ∈ Q, where |Q| = n, is denoted by Wi
and has the following properties:

1 Wi ⊆ W per 1 < i ≤ n
2 ∃j , s.1 ≤ j ≤ n ∧ s ∈ Wi ∧ O(qi , s) 6= O(qj , s)

3 No subset of Wi satisfies property 2.

State Cover Set
The state cover set is a nonempty set of sequences (S ⊆X ∗ s.t.:
I ∀qi ∈ Q ∃r ∈ S s.t .δ(q0, r) = qi

From the definition it is evident that S ⊆P

(ATSE) Test Generation – Finite State Models CS@UNICAM 22 / 29

Identification Set and State Cover Set

Identification Set
The Identification Set is associated to each state q ∈ Q of an FSM.

An Identification set for state qi ∈ Q, where |Q| = n, is denoted by Wi
and has the following properties:

1 Wi ⊆ W per 1 < i ≤ n
2 ∃j , s.1 ≤ j ≤ n ∧ s ∈ Wi ∧ O(qi , s) 6= O(qj , s)

3 No subset of Wi satisfies property 2.

State Cover Set
The state cover set is a nonempty set of sequences (S ⊆X ∗ s.t.:
I ∀qi ∈ Q ∃r ∈ S s.t .δ(q0, r) = qi

From the definition it is evident that S ⊆P

(ATSE) Test Generation – Finite State Models CS@UNICAM 22 / 29

Exercise

Compute the State cover set and the identification set for the usual
automaton

(ATSE) Test Generation – Finite State Models CS@UNICAM 23 / 29

The W p procedure (assuming m = n)

The test set derived using the W p −method is given by the union to
two test sets T1, T2 calculated according to the following procedure:

1 Compute sets P, S , W , and Wi

2 T1 = S ·W
3 LetW = {W1,W2, . . . ,Wn}
4 Let R = {r1, r2, . . . , rk} where R = P −S and rj ∈ R is s.t.
δ(q0, rj) = qi

5 T2 = R⊗W = ∪K
j=1({rj} ·Wi) where Wi ∈ W is the state

identification set for state qi (⊗ is the partial string concatenation
operator)

(ATSE) Test Generation – Finite State Models CS@UNICAM 24 / 29

W p −method rationale

Phase 1: test are of the form uv where u ∈ S and v ∈ W . Reach
each state than check if it is distinguishable from another one
Phase 2: test covers all the missing transitions and then check if
the reached state is different from the one specified in the model

(ATSE) Test Generation – Finite State Models CS@UNICAM 25 / 29

W p −method in practice

W = {a,aa,aaa,baaa}
P = {ε,a,b,bb,ba,bab,baa,baab,baaa,baaab,baaaa}
S = {ε,b,ba,baa,baaa}
W1 = {baaa,aa,a}, W2 = {baaa,aa,a}, W3 = {aa,a}
W4 = {aaa,a}, W5 = {aaa,a}

(ATSE) Test Generation – Finite State Models CS@UNICAM 26 / 29

W p −method in practice

W = {a,aa,aaa,baaa}
P = {ε,a,b,bb,ba,bab,baa,baab,baaa,baaab,baaaa}
S = {ε,b,ba,baa,baaa}
W1 = {baaa,aa,a}, W2 = {baaa,aa,a}, W3 = {aa,a}
W4 = {aaa,a}, W5 = {aaa,a}

(ATSE) Test Generation – Finite State Models CS@UNICAM 26 / 29

W p −method in practice

W = {a,aa,aaa,baaa}
P = {ε,a,b,bb,ba,bab,baa,baab,baaa,baaab,baaaa}
S = {ε,b,ba,baa,baaa}
W1 = {baaa,aa,a}, W2 = {baaa,aa,a}, W3 = {aa,a}
W4 = {aaa,a}, W5 = {aaa,a}

(ATSE) Test Generation – Finite State Models CS@UNICAM 26 / 29

Is it phase 2 needed?

Let’s consider the following FSM:

Now introduce an operation error or a transfer error on a “c” transition

(ATSE) Test Generation – Finite State Models CS@UNICAM 27 / 29

The W p procedure (assuming m > n)

Modify the derivation of the two sets as follows:
I T1 = S ·Z where Z = X [m − n] ·W
I T2 = (R ·X [m − n])⊗W

Let S = R ·X [m − n] = {s|s = r · u s.t. r ∈ R ∧ u ∈X [m − n]}
then T2 = S ⊗W = ∪s∈S (s ·Wl) where δ(q0, s) = δ(δ(q0, r),u) = ql

(ATSE) Test Generation – Finite State Models CS@UNICAM 28 / 29

Possible alternatives to W-method

I W-method high effectiveness in bugs identification
I High number of generated tests

To solve this issue alternative solutions have been proposed possibly
reducing effectiveness:

UIO-sequence method
Distinguishing signatures

(ATSE) Test Generation – Finite State Models CS@UNICAM 29 / 29

