Software Project
Management - Laboratory

Lecture n° 1
A.Y. 2021-2022

Prof. Fabrizio Fornari

Who is Fabrizio Fornari?

2020 Postdoc in Computer Science at UNICAM

2018 PhD title in Computer Science at UNICAM. 3 months in Brisbane
Queensland University of Technology (Australia)

2012-2013 Master’s degree in Computer Science at UNICAM
and University of Reykjavik (Iceland)

2010-2011 Bachelor degree in Computer Science at UNICAM

Collaboration

PROS Lab - PROcesses and Services Laboratory hitp://pros.unicam.it/

Past collaborations:

National Research Center of Pisa (CNR)

Apromore group https://apromore.org/ (University of Melbourne)
Technical University of Denmark

Sant’Anna School of Advanced Studies (Pisa)

/'-_—-.__

%/

PROS Lab

g mnicam.it

http://pros.unicam.it/
https://apromore.org/

My Research Topics

Business Process Management

Business Process Modeling and Verification
Business Process and loT

Model-Driven Engineering for loT

Developed Software Tools:
- BProVe, Business Process Verifier
- BEBOP, understandaBility vErifier for Business Process models

- RePROSitory, Repository of open PROcess models and logS

Teaching

2020-2021 & 2021-2022
- Software Project Management Laboratory at “University of Camerino”, Department of
Computer Science (6CFU)

2019-2020
- Computer Science at “Universita di Macerata”, Faculty of “Economia e diritto” (6CFU)

2018-2019
- Computer Science at “Universita di Macerata”, Faculty of “Economia e diritto” (6CFU)
- Software Project Management Laboratory at “University of Camerino”, Department of

Computer Science (3CFU) m

Group Projects

| supervised/co-supervised a dozen of group
projects and experimental thesis.

| try to apply together with the students the
methodology that we will see during the
course.

ENABLER
FACILITATOR
TEACHER

SUPPORTER
PROTECTOR

COMMUNICATION HUB
TRANSLATOR

WWW.VITALITYCHICAGO.COM

Course Overview

Course Objective

The course introduces the students to the basic knowledge of complex software system
production following the DevOps methodology.

Prerequisite knowledge

e Basic Programming Experience
e Basic Software Engineering Methods and Techniques

Learning Outcome

The student will be able to manage the organization and the development of a software applying
DevOps methodology.

Course Overview

Website:
e http://didattica.cs.unicam.it/doku.php?id=didattica:ay2122:spm:main
Teaching Hours:

e Thursday 9am-11am (Lab)
e Friday 11am - 1pm (Lab)

Students Meeting:

e After each lesson or,
e By requesting a meeting by sending an email to fabrizio.fornari@unicam.it
e My desk is in Building n°2 of the Computer Science Department

Note: only email coming from the @studenti.unicam.it domain will be processed.

mailto:fabrizio.fornari@unicam.it

Technical Requirements

e None!

But actually..

e Every Computer Science Background will help
e Your attitude is what matters the most

Exam

The exam involves the development of a software project by following the methodologies
introduced during lecture hours.

Exam Evaluation:

Git Usage
Testing
SCRUM application/Sprint management

Presentation

Overall Project

https://docs.qgoogle.com/spreadsheets/d/1Ysy8JWuopAN Tt PnjVwlaUKOK3rWcnyAh2K-
mdoEMY/edit?usp=sharing

https://docs.google.com/spreadsheets/d/1Ysy8JWuopAN_Tt_PnjVwlaUK0K3rWcnyAh2K-mdoEMY/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1Ysy8JWuopAN_Tt_PnjVwlaUK0K3rWcnyAh2K-mdoEMY/edit?usp=sharing

Projects

You will have to choose between 4 different projects.

Group Formation

Group of 2 or 3 students have to be formed

A Project will be assigned

A GitHub account is needed for every student

A GitHub repository will be assigned to each group

Define Groups

https://docs.qgoogle.com/spreadsheets/d/1t0OdMoBKzBjcHGQI3ZACmrkkcaFbc2 TuPf
9BU/edit?usp=sharing

Groups - SPM 2021 5% @

File Edit View Insert Format Data Tools Add-ons Help Lastedit was seconds ago

~ o~ & T 0% v § % O .00 123v Defaut(Ai.~ 10 ~ B I & A . H

37 -
A c D E
Group Acronym Surname ID (Matricola) GitHub ID Email Role
Rinforzari 12345678 FabioRinforzari name.surname@studenti.unicam.it Scrum Master
FTC 12345679
12345677

Example Group

O 00 N | | & W N =

Tools Objective

Microsoft Teams Fast communication inside team

Google Drive For sharing and exchanging files or notes
Google Meet For online calls/online meetings

https://docs.google.com/spreadsheets/d/1tOdMoBKzBjcHGQI3ACmrkkcaFbc2TuPfgmFQM2jL9BU/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1tOdMoBKzBjcHGQI3ACmrkkcaFbc2TuPfgmFQM2jL9BU/edit?usp=sharing

Questionnaire

https://docs.qoogle.com/forms/d/e/1FAIpQLSdsRrooafPFRHEmMIx18r1JG78ECpiP
NACMETE/73Mez9 bRRSQ/viewform?usp=sf link

https://docs.google.com/forms/d/e/1FAIpQLSdsRrooafPFRHEmIx18r1JG78ECpiPNACMETE73Mez9_bRRSQ/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSdsRrooafPFRHEmIx18r1JG78ECpiPNACMETE73Mez9_bRRSQ/viewform?usp=sf_link

Course Introduction

Why do we study software project
management?

Course Context

-

Hardware Software

IR M end - a0d BT WL
A oelect)

S b select) .

et sceme objects. active < modffler
o Wlacted” o str(sodifien oh)) S maiipe e | e o
’v"'.l"". ' " Hasad 4 B

-
The physical part The logical part -

Long Story Short

000

1950 1960 1970 2000

Long Story Short

C N N TEMPORAL LINE

1960 1970 2000

e Diffusion of the firsts computers
e Beginning of the “coding problem”
e Users and Hardware resellers are the main developers

Long Story Short

C N N TEMPORAL LINE
1950 1970 2000

Late ‘50s - early ‘60s

Being a developer becomes a profession

The activity to develop high-level languages begins
Very few complex software projects are being developed

Long Story Short

C N N TEMPORAL LINE

1950 1960 2000

e |ate '60s
e First attempt to develop complex software projects (e.g. operating systems such as
the IBM 360)

e Increased complexity of systems

Long Story Short

C N N TEMPORAL LINE
1950 1960

e Late ‘60s

e First attempt to develop complex software projects
(e.g. operating systems such as the IBM 360)

e Increased complexity of systems

e Software Market Begins

Long Story Short

C N N TEMPORAL LINE
1950 1960 2000

e Late ‘60s

e First attempt to develop complex software projects
(e.g. operating systems such as the IBM 360)

e Increased complexity of systems

e Software Market Begins

e Quality Requirements

Long Story Short

C N N TEMPORAL LINE

1950 1960 2000

Late ‘60s

Projects running out of budget
Projects running late

Low Quality Software
Software not compliant with the requirements
Unmanageable projects, code too difficult to maink

Software Crisis

“The major cause is... that the machines have become several orders of magnitude more powerful!

..as long as there were no machines, programming was no problem at all;
when we had a few weak computers, programming became a mild problem,
and now we have gigantic computers, programming had become an equally gigantic problem.

... To put it in another way: as the power of available machines grew by a factor of more than a thousand,
society’s ambition to apply these machines grew in proportion, and it was the poor programmer who
found his job in this exploded field of tension between ends and means. The increased power of the
hardware, together with the perhaps even more dramatic increase in its reliability, made solutions
feasible that the programmer had not dared to dream about a few years before. And now, a few years
later, he had to dream about them and, even worse, he had to transform such dreams into reality!”

-Edsger Dijkstra wt‘ .

Software Development was only about coding

An answer to the Software Crisis

e Recognising that developing software is a complex process similar to those that generates
engineering products (Software Development Process)

e The birth of Software Engineering

Requirements System
Definition Implementation

Deployment Maintenance Bug Fixing

Software Development Process

Software Development Process is the process of dividing software development work into distinct
phases to improve design, product management, and project management. It is also known as a
software development life cycle (SDLC)

Requirements

Waterfall Model

Waterfall Model

e Each phase is separated from the other

Requirements

e Staff dedicated to each phase

Waterfall Model

e Guided by the production of
documents

e Progress measurable based
on the amount of
documentation produced

e Documents to support
personnel changes

Requirements

\y List of
Requirements

Models and design

documentation

1)l Produced
code

List of Tests

Software

product

Waterfall Model - Negative Aspects ?

List of
Requirements "\| Requirements

Models and design

documentation

)| Produced
code

List of Tests

Software

product

Waterfall Model - Negative Aspects

e Too much focused on the

: List of
production of documents and Requirements "W| Requirements
less on the actual software
product Models and design
documentation
e Software is released only at
the end Produced
M| code
e Customer involved only during
the initial phase (requirements List of Tests
definition) X i

e Changings in the
requirements are not possible
after the requirements phase
is over

Software

product

Long Story Short

000

1950 1960 1970

e The birth of the Agile paradigm
e Release of the Manifesto for Agile Software Development

The Agile Manifesto

Individuals Interactions > Processes Tools
Working Software > Comprehensive Documentation

Customer Collaboration > Contract Negotiation

Responding to Change > Following a Plan

Manifesto: https://agilemanifesto.org/

Agile Model

Complex work divided into small parts

e Big companies divided into small teams

e Long projects divided into lists of tasks to be fulfilled in
short amount of time

e Requirements can change in anytime

Software Development Process

Requirements

Waterfall vs Agile

Requirements [JJj Design I 'mplementation [JJ Testing B Release

Under the term Agile

XP

Kanban

Lean

SCRUM

Scrum is an Agile framework for project management that emphasizes teamwork,
accountability and iterative progress toward a well-defined goal.

XP

Kanban

Lean

Schwaber, K. (1997). Scrum development process. In Business object
design and implementation (pp. 117-134). Springer, London.

SCRUM

Individual and Interactions

Working Software

Collaboration with Customer

Requirements are likely to change or not known at the start of the project.
Scrum is:

e Lightweight
e Simple to understand
e Difficult to master

SCRUM

Benefits:

Better Quality Products
Reduced time to market
Increase Return on Investment
Higher Team Morale

Enhance Team Collaboration

SCRUM

The main components of the Scrum Framework are:

Roles
Artifacts
Events
Sprint

Roles

Product Owner - is responsible for working with the user group to determine what features will be in the
product release. Some of the responsibilities:

e Develop the direction and strategy for the products and services, including the short and long-time
goals;

e Provide or have access to knowledge about the product or the service;

e Understand and explain customer needs for the Development team;

Scrum Master - is the facilitator for an agile development team. Some of the responsibilities:

e Act as a coach, helping the team to follow scrum values and practices;
e Help to remove impediments and protect the team from external interferences;
e Promote a good cooperation between the team and stakeholders;

Scrum Team - is formed by 3 to 9 people who MUST fulfill all technical needs to deliver the product or the
service. They will be guided directly by the Scrum Master, but they will not be directly managed. They must
be self-organized, versatile, and responsible enough to complete all required tasks.

Artifacts

The SCRUM artifacts are used to help define the workload coming into the team and currently being
worked upon the team.

The main artifacts:

e Product backlog - a collection of user stories which present functionalities required/wanted by
the product team. Usually the product owner takes responsible for this list.

e Sprint backlog - a collection of stories which could be included in the current sprint.

User Stories

A User Story is a simple and quick description of a specific way that the user will use the software.
Generally between one and four sentences long.

Can generally follow a template:
As a <type of user>,

| want to <specific action I'm taking>
so that <what | want to happen as a result>.

e.g. “As a customer, | want to be able to create an account so that | can see the purchases |
made in the last year to help me budget for next year.”

Assign a value to estimate the effort needed to elaborate a user story (e.g., 1 to 5).

Artifacts: Product Backlog and Sprint Backlog

Product Backlog

DEEP

Technique
Detailed
Estimated

Emergent
Prioritized

User story #1
User story #2
User story #3
User story #4
User story #5

User story #6

Sprint #1
User story #1
User story #2

User story #3

Sprint Backlog

Sprint #2

User story #4

Sprint #3

Artifacts: Burn-down chart

A burn-down chart is a graphical representation of work left to do versus time.
It is useful for predicting when all of the work will be completed.

Burndown Chart

-
)

o
=
o
2

bl

\d
N
j’g

-®- Estimated burndown ¢ Actual burndown

Events

5. Product
Backlog
Refinement

1. Sprint 4. Sprint
Planning Refrospective

e All sprints begin with planning.
e The team needs to identify and commit to which items are going to be delivered as part of the sprint.
e Here the Scrum master has a main role

Events

5. Product
Backlog
Refinement

1. Sprint 4. Sprint
Planning Refrospective

e The aim of this meeting is to ensure everyone within the team knows the status of the tasks
accomplished (done) and of those in progress.
e The team has to answer the following questions:
o What have we done until now?
o What are we going to do today?
o What are the impediments?
No longer than 3 minutes per person
The SCRUM master must where possible mitigate outside interruptions and distractions to the team

Events

5. Product
Backlog
Refinement

1. Sprint 4. Sprint
Planning Refrospective

A Sprint Review/Demo meeting is held at the end of the Sprint to inspect the Increment.

The Team demonstrates the Increment with focus on the Sprint Goal according to the Definition of
Done.

e The Product Owner reviews and accepts the delivered Increment.

Events

5. Product
Backlog
Refinement

1. Sprint 4. Sprint
Planning Refrospective

The sprint retrospective is usually the last thing done in a sprint.
You can schedule a scrum retrospective for up to an hour, which is usually quite sufficient.

The retrospective gives the team the opportunity to identify 3 key aspects:
o What should starting doing?
o What did not go well (and stop doing again)?
o What went well (and should keep doing)?

e Continually improve the team efficiency.

Events

5. Product
Backlog
Refinement

1. Sprint 4. Sprint

Refrospective

Planning

Think of the backlog as the roadmap of the project.

As the team collaborates to create a list of everything that needs to be built or done for project

completion, this list can be modified and added to throughout the project to ensure that all of the
necessary needs of the project are met.

e It can be done anytime along the sprint period

Sprint

In the Scrum Framework all activities needed for the implementation of entries from the Scrum
Product Backlog are performed within Sprints (also called ‘lterations’). Sprints are always short:
normally about 2-4 weeks.

Milestones > Epics > User Stories > Tasks

- An epic captures a A story is a brief A task is typically something like “code
ﬁlr;[ups of issues large body of work. It statement of a this”, “design that”, “create test data for
Correspond to a is essentially a “large prodgct suph-and-such”, and so on. Tend tg be
project, feature user story” that can be rqulrement ora thlpgs dpne by one person. A task is not
- time,period " broken down into a business case. written in the user story format. A task

number of smaller has more a technical nature.
stories.

Experienced Scrum Teams spend time and effort to break down complex and larger items (i.e
user features or epics) into smaller user stories (or subsequently breaking down into tasks, or
subtasks).

SCRUM - Framework

Sprint
Retrospective

Sprint > Sprint
Planning Review

Sprint Increment
Backlog

Scrum Framework © 2020 Scrum.org

ltalian Seminars

https://computerscience.unicam.it/nuove-e
d-emergenti-prospettive-la-societa-digitale

My edited seminar on Agile and Scrum:
https://youtu.be/G110B8CQII8 (Italian)

Universita di Camerino
Scuola di Scienze e Tecnologie
Sezione di Informatica

Universith di Camerino

1336

Ve
Mgl |

Nuove ed emergenti prospéﬁive
per la SocietajRigitale

Seconda Edizione

Eventi divulgativi per una audience interessata alle nuove ed emergenti prospettive che
le scienze e tecnologie informatiche stanno offrendo alla nostra Societa.

sala virtuale: hitps://unicam.webex.com/meet/flavio.corradini

Martedi 20 Luglio 2021 - ore 18:30
Conservazione della memoria storica:
dalle fonti scritte alla blockchain
Alessandra Del Principe & Francesco Tiezzi
Giovedi 22 Luglio 2021 - ore 18:30
Coordiniamo, I'unione fa la forzal
Anche per le componenti software ...
Michele Loreti
Lunedi 26 Luglio 2021 - ore 18:30
Intelligenza Arfificiale “spiegabile”: come gli algoritmi di Machine
Leamning vedono i dati e la spiegazione delle previsioni
Marco Piangereli
Lunedi é Seftemb 1 - ore 18:30
Modellare per comprendere e migliorare | processi
organizzativi delle Imprese e della PA
Barbara Re
Gi i ffembre 2021 - ore 18:30
Internet of Things: il futuro degli oggetti intelligenti
Leonardo Mostarda
Lunedi 13 Seftembre 2021 - ore 18:30
Social Engineering, sicuri in rete
Fausto Marcantoni

Gilovedi 16 Seftembre 2021 - ore 18:30
Blockchain e Criptovalute
Andrea Morichetta
Lunedi 20 Seftembre 2021 - ore 18:30
Agile e di squadra ... lo sviluppo software del futuro!
Fabrizio Fornarn
Giovedi 23 Seftembre 2021 - ore 18:30
Process Mining, pillola azzurra o pillola rossa?
Lorenzo Rossi
Lunedi 27 Seftembre 2021 - ore 18:30
Dall'Industria 4.0 alla Societa 5.0: 'upgrade dell'innovazione
Diletta Romana Cacciagrano
G 30 Seftembre 2021 - ore 18:30
Qualita del software? Sempre con metodo!
Andrea Polini

Moderatore

Flavio Corradini

Relatori
Sezione di Informatica, Scuola di
Universita di Camerino.

Focus of Agile paradigm

Customer Developer
- -
Software Requirement Tester

Solvtion

W Ao

The Product Pipeline
THE PRODUCT PIPELINE

OBSERV-
ATIONS

Continuous Deployment

Continuous Design

|
PRODUCT

Roles & Interfaces

DEVELOPER TESTER

Lo

) &
«/ ===

v/ =

Inputs: Working
software, notes on
target behavior
Outputs: Validated
software

Inputs: User stories

Outputs: Software design
& Implementation

OPERATORS

&
»

Inputs: Validated software
deployment notes

Outputs: Working systems,
monitoring & analytics
thereof evaluates what the

software is doing and if it
behaves as expected

Classic (and Old) Process

Stakeholders and communication chain in a typical IT process.

Customer Developer Operations
+ . +
Software Requirement Tester IT Infrastructure

Agile

Agile addresses gaps in Customer and Developer communications

Customer Developer
i GAP E
Software Requirement Tester

Solvtion

W Agie

Operations
+

IT Infrastructure

DevOps

“A compound of development (Dev) and operations (Ops), DevOps is the union of
people, process, and technology to continually provide value to customers.

What does DevOps mean for teams? DevOps enables formerly siloed roles —
development, IT operations, quality engineering, and security — to coordinate and
collaborate to produce better, more reliable products. By adopting a DevOps
culture along with DevOps practices and tools, teams gain the ability to better
respond to customer needs, increase confidence in the applications they build,
and achieve business goals faster.”

— Azure.microsoft.com

https://azure.microsoft.com/en-us/overview/what-is-devops/

DevOps

DevOps addresses gaps in Developer and IT Operations communications

Customer Developer
- -
Software Requirement bAP Tester

Solution olution

W Mg " Dovops

Operations
+

IT Infrastructure

DevOps Technologies

X | gra | | git é & | aws

Confluence gocker

&G sot |

-]Uml Nagios’ splunk ; i v_“J‘
enki el

DATADOG

DevOps Technologies

Oplvotal'
Lucidchart
»planio

Wrike

& TeamCity % shippable

QJenkins 3
circleci

buddy

ﬁ s asana
woie OOX

Flowdock

é Travis Cl

smartsheet
vy
i» Basecamp ::
mm Dmox
:- zoominfo
matters __

4= slack

AN CODE CLIMATE 2
%%

@ SAUCE
servicenow TestFairy

B)FitNesse
@ m zendesk chsmine

g nede: & @
¥ " @40 ICRM cucumber i;

Z=PHYR
(® BrowserStack P
(1 P OMNI

@freshdesk — yerpy GD

docker GitHub
o0 = Sonatype

Visual Studio
Team Foundation Server

kubernetes

[H)HashiCorp

amazon

W bugsnag
splunk> L@GGLY

[ZABBIX|

& -
dynatrace

bigpanda

% RAYGUN
& SENTRY

riRollbar

[:]SoucceClear

DATADOG

APPDYNAMICS

Process Models

Waterfall vs Agile vs Scrum vs DevOps

Google Trends indication

® Agile software dev... ® Scrum DevOps ® Waterfall model

Topic Software development Topic Topic

Worldwide + 2004 - present ¥ All categories ¥ Web Search v

Interest over time

https://trends.google.com/trends/explore?date=all&q=%2Fm%2F02zhbn,%2Fm%2F0ck_p8,%2Fm%2F0c3tq11,%2Fm%2F0867I

A Curiosity

DevOpsSec
Rugged DevOps

Incorporate security

If you describe someone's
character as rugged, you mean
that they are strong and
determined, and have the ability|
to cope with difficult situations.

The Rugged Manifesto

I am rugged and, more importantly, my code is rugged.
| recognize that software has become a foundation of our modem world.
| recognize the awesome responsibility that comes with this foundational role.
| recognize that my code will be used in ways | cannot anticipate, in ways it was not
designed, and for longer than it was ever intended.
| recognize that my code will be attacked by talented and persistent adversaries who
threaten our physical, economic and national security.

| recognize these things — and | choose to be rugged.

| am rugged because | refuse to be a source of vulnerability or weakness.
| am rugged because | assure my code will support its mission.
| am rugged because my code can face these challenges and persist in spite of them.
| am rugged, not because it is easy, but because it is necessary and | am up for the
challenge.

Additional Materials

Scrum Field GUide, A il som Wik S st

The: Agile Advice for Your First Year and Beyond 5
(Addison-Wesley Signature Series (Cohn)) 2nd Edition THE SCRUM *~
F1ELD GUIDE

By MItCh Lacey AGite Apvice #or Yo

ANnD Bryosp

Ur FirsT YEAR

SecoNp EDITION

Mircu LACEY

Foeewerds by Jeoff Swiberdand and Kenneth 5. Rubin

Additional Materials

Scrum Field Guide,

The: Agile Advice for Your First Year and Beyond
(Addison-Wesley Signature Series (Cohn)) 2nd Edition

By Mitch Lacey

https://www.mountaingoatsoftware.com/

By Mike Cohn

<1\
THE SCRUM *

Fierp GUIDE

AGILE ADVICE FORrR YoOu
ANnD Bryosp

kR FirstT YEAR

SecoNp EDITION

Mircu LACEY

Foeewerds by Jeoff Swiberdand and Kenneth 5. Rubin

https://www.mountaingoatsoftware.com/

Additional Materials

THE SCIENCE OF DEVOPS

Accelerate ACCE LE RATE

Building and Scaling High Performing
Technology Organizations

Building and Scaling High Performing Technology Organizations

By Nicole Forsgren, PhD Jez Humble and Gene Kim

Nicole Forsgren, PhD
Jez Humble and Gene Kim

Additional Materials

The DevOps Handbook

How to create world-class agility, reliability, & security in
technology organizations

HOW TO CREATE WORLD-CLASS -
AGILITY, RELIABILITY, & SECURITY /

IN TECHNOLOGY ORGANIZATIONS

By Gene Kim, Jez Humble, Patrick Debois, & John Wills

Any Question?

