
Software Project
Management - Laboratory

Lecture n° 1
A.Y. 2021-2022

Prof. Fabrizio Fornari

Who is Fabrizio Fornari?
2020 Postdoc in Computer Science at UNICAM

2018 PhD title in Computer Science at UNICAM. 3 months in Brisbane
Queensland University of Technology (Australia)

2012-2013 Master’s degree in Computer Science at UNICAM
and University of Reykjavik (Iceland)

2010-2011 Bachelor degree in Computer Science at UNICAM

Collaboration
PROS Lab - PROcesses and Services Laboratory http://pros.unicam.it/

Past collaborations:

● National Research Center of Pisa (CNR)
● Apromore group https://apromore.org/ (University of Melbourne)
● Technical University of Denmark
● Sant’Anna School of Advanced Studies (Pisa)

http://pros.unicam.it/
https://apromore.org/

My Research Topics
Business Process Management
Business Process Modeling and Verification
Business Process and IoT
Model-Driven Engineering for IoT

Developed Software Tools:
- BProVe, Business Process Verifier
- BEBoP, understandaBility vErifier for Business Process models
- RePROSitory, Repository of open PROcess models and logS

Teaching
2020-2021 & 2021-2022

- Software Project Management Laboratory at “University of Camerino”, Department of
Computer Science (6CFU)

2019-2020
- Computer Science at “Università di Macerata”, Faculty of “Economia e diritto” (6CFU)

2018-2019
- Computer Science at “Università di Macerata”, Faculty of “Economia e diritto” (6CFU)
- Software Project Management Laboratory at “University of Camerino”, Department of

Computer Science (3CFU)

Group Projects
I supervised/co-supervised a dozen of group
projects and experimental thesis.

I try to apply together with the students the
methodology that we will see during the
course.

Course Overview
Course Objective

The course introduces the students to the basic knowledge of complex software system
production following the DevOps methodology.

Prerequisite knowledge

● Basic Programming Experience
● Basic Software Engineering Methods and Techniques

Learning Outcome

The student will be able to manage the organization and the development of a software applying
DevOps methodology.

Course Overview
Website:

● http://didattica.cs.unicam.it/doku.php?id=didattica:ay2122:spm:main

Teaching Hours:

● Thursday 9am-11am (Lab)
● Friday 11am - 1pm (Lab)

Students Meeting:

● After each lesson or,
● By requesting a meeting by sending an email to fabrizio.fornari@unicam.it
● My desk is in Building n°2 of the Computer Science Department

Note: only email coming from the @studenti.unicam.it domain will be processed.

mailto:fabrizio.fornari@unicam.it

Technical Requirements
● None!

But actually..

● Every Computer Science Background will help
● Your attitude is what matters the most

Exam

The exam involves the development of a software project by following the methodologies
introduced during lecture hours.

Exam Evaluation:

● Git Usage

● Testing

● SCRUM application/Sprint management

● Presentation

● Overall Project

https://docs.google.com/spreadsheets/d/1Ysy8JWuopAN_Tt_PnjVwlaUK0K3rWcnyAh2K-
mdoEMY/edit?usp=sharing

https://docs.google.com/spreadsheets/d/1Ysy8JWuopAN_Tt_PnjVwlaUK0K3rWcnyAh2K-mdoEMY/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1Ysy8JWuopAN_Tt_PnjVwlaUK0K3rWcnyAh2K-mdoEMY/edit?usp=sharing

Projects

● Group of 2 or 3 students have to be formed
● A Project will be assigned
● A GitHub account is needed for every student
● A GitHub repository will be assigned to each group

Group Formation

You will have to choose between 4 different projects.

Define Groups
https://docs.google.com/spreadsheets/d/1tOdMoBKzBjcHGQI3ACmrkkcaFbc2TuPfgmFQM2jL
9BU/edit?usp=sharing

https://docs.google.com/spreadsheets/d/1tOdMoBKzBjcHGQI3ACmrkkcaFbc2TuPfgmFQM2jL9BU/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1tOdMoBKzBjcHGQI3ACmrkkcaFbc2TuPfgmFQM2jL9BU/edit?usp=sharing

Questionnaire
https://docs.google.com/forms/d/e/1FAIpQLSdsRrooafPFRHEmIx18r1JG78ECpiP
NACMETE73Mez9_bRRSQ/viewform?usp=sf_link

https://docs.google.com/forms/d/e/1FAIpQLSdsRrooafPFRHEmIx18r1JG78ECpiPNACMETE73Mez9_bRRSQ/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSdsRrooafPFRHEmIx18r1JG78ECpiPNACMETE73Mez9_bRRSQ/viewform?usp=sf_link

Course Introduction
Why do we study software project

management?

Course Context

 Hardware

The physical part

Software

The logical part

Long Story Short

TEMPORAL LINE

1950 1960 1970 2000

Long Story Short

TEMPORAL LINE

1950 1960 1970 2000

● Diffusion of the firsts computers
● Beginning of the “coding problem”
● Users and Hardware resellers are the main developers

Long Story Short

TEMPORAL LINE

1950 1960 1970 2000

● Late ‘50s - early ‘60s
● Being a developer becomes a profession
● The activity to develop high-level languages begins
● Very few complex software projects are being developed

Long Story Short

TEMPORAL LINE

1950 1960 1970 2000

● Late ‘60s
● First attempt to develop complex software projects (e.g. operating systems such as

the IBM 360)
● Increased complexity of systems

Long Story Short

TEMPORAL LINE

1950 1960 1970 2000

● Late ‘60s
● First attempt to develop complex software projects

(e.g. operating systems such as the IBM 360)
● Increased complexity of systems
● Software Market Begins

Long Story Short

TEMPORAL LINE

1950 1960 1970 2000

● Late ‘60s
● First attempt to develop complex software projects

(e.g. operating systems such as the IBM 360)
● Increased complexity of systems
● Software Market Begins
● Quality Requirements

Long Story Short

TEMPORAL LINE

1950 1960 1970 2000

● Late ‘60s
● Projects running out of budget
● Projects running late
● Low Quality Software
● Software not compliant with the requirements
● Unmanageable projects, code too difficult to maintain

SOFTWARE

CRISIS

Software Crisis

“The major cause is... that the machines have become several orders of magnitude more powerful!

 ..as long as there were no machines, programming was no problem at all;
 when we had a few weak computers, programming became a mild problem,

and now we have gigantic computers, programming had become an equally gigantic problem.

 ...To put it in another way: as the power of available machines grew by a factor of more than a thousand,
society’s ambition to apply these machines grew in proportion, and it was the poor programmer who
found his job in this exploded field of tension between ends and means. The increased power of the
hardware, together with the perhaps even more dramatic increase in its reliability, made solutions
feasible that the programmer had not dared to dream about a few years before. And now, a few years
later, he had to dream about them and, even worse, he had to transform such dreams into reality!”

Software Development was only about coding
-Edsger Dijkstra

An answer to the Software Crisis
● Recognising that developing software is a complex process similar to those that generates

engineering products (Software Development Process)

● The birth of Software Engineering

Requirements
Definition

System
Design

System
Implementation Testing

Deployment Maintenance Bug Fixing

Software Development Process
Software Development Process is the process of dividing software development work into distinct
phases to improve design, product management, and project management. It is also known as a
software development life cycle (SDLC)

Waterfall Model

Waterfall Model
● Each phase is separated from the other

● Staff dedicated to each phase

Waterfall Model
● Guided by the production of

documents

● Progress measurable based
on the amount of
documentation produced

● Documents to support
personnel changes

List of
Requirements

Models and design
documentation

Produced
code

List of Tests

Software
product

Waterfall Model - Negative Aspects ?

List of
Requirements

Models and design
documentation

Produced
code

List of Tests

Software
product

Waterfall Model - Negative Aspects
● Too much focused on the

production of documents and
less on the actual software
product

● Software is released only at
the end

● Customer involved only during
the initial phase (requirements
definition)

● Changings in the
requirements are not possible
after the requirements phase
is over

List of
Requirements

Models and design
documentation

Produced
code

List of Tests

Software
product

Long Story Short

TEMPORAL LINE

1950 1960 1970 2000

● The birth of the Agile paradigm
● Release of the Manifesto for Agile Software Development

The Agile Manifesto

Manifesto: https://agilemanifesto.org/

Individuals Interactions > Processes Tools

Working Software > Comprehensive Documentation

Customer Collaboration > Contract Negotiation

Responding to Change > Following a Plan

Agile Model

● Complex work divided into small parts

● Big companies divided into small teams

● Long projects divided into lists of tasks to be fulfilled in
short amount of time

● Requirements can change in anytime

Software Development Process

X

Waterfall vs Agile

Under the term Agile

SCRUM
Scrum is an Agile framework for project management that emphasizes teamwork,
accountability and iterative progress toward a well-defined goal.

Schwaber, K. (1997). Scrum development process. In Business object

design and implementation (pp. 117-134). Springer, London.

SCRUM
Individual and Interactions

Working Software

Collaboration with Customer

Requirements are likely to change or not known at the start of the project.

Scrum is:

● Lightweight
● Simple to understand
● Difficult to master

SCRUM
Benefits:

● Better Quality Products
● Reduced time to market
● Increase Return on Investment
● Higher Team Morale
● Enhance Team Collaboration

SCRUM

The main components of the Scrum Framework are:

● Roles
● Artifacts
● Events
● Sprint

Roles
Product Owner - is responsible for working with the user group to determine what features will be in the
product release. Some of the responsibilities:

● Develop the direction and strategy for the products and services, including the short and long-time
goals;

● Provide or have access to knowledge about the product or the service;
● Understand and explain customer needs for the Development team;

Scrum Master - is the facilitator for an agile development team. Some of the responsibilities:

● Act as a coach, helping the team to follow scrum values and practices;
● Help to remove impediments and protect the team from external interferences;
● Promote a good cooperation between the team and stakeholders;

Scrum Team - is formed by 3 to 9 people who MUST fulfill all technical needs to deliver the product or the
service. They will be guided directly by the Scrum Master, but they will not be directly managed. They must
be self-organized, versatile, and responsible enough to complete all required tasks.

Artifacts

The SCRUM artifacts are used to help define the workload coming into the team and currently being
worked upon the team.

The main artifacts:

● Product backlog - a collection of user stories which present functionalities required/wanted by
the product team. Usually the product owner takes responsible for this list.

● Sprint backlog - a collection of stories which could be included in the current sprint.

User Stories

A User Story is a simple and quick description of a specific way that the user will use the software.
Generally between one and four sentences long.

Assign a value to estimate the effort needed to elaborate a user story (e.g., 1 to 5).

e.g. “As a customer, I want to be able to create an account so that I can see the purchases I
made in the last year to help me budget for next year.”

Can generally follow a template:

As a <type of user>,
I want to <specific action I’m taking>

so that <what I want to happen as a result>.

Artifacts: Product Backlog and Sprint Backlog

Artifacts: Burn-down chart
A burn-down chart is a graphical representation of work left to do versus time.
It is useful for predicting when all of the work will be completed.

Events

● All sprints begin with planning.
● The team needs to identify and commit to which items are going to be delivered as part of the sprint.
● Here the Scrum master has a main role

Events

● The aim of this meeting is to ensure everyone within the team knows the status of the tasks
accomplished (done) and of those in progress.

● The team has to answer the following questions:
○ What have we done until now?
○ What are we going to do today?
○ What are the impediments?

● No longer than 3 minutes per person
● The SCRUM master must where possible mitigate outside interruptions and distractions to the team

Events

● A Sprint Review/Demo meeting is held at the end of the Sprint to inspect the Increment.
● The Team demonstrates the Increment with focus on the Sprint Goal according to the Definition of

Done.
● The Product Owner reviews and accepts the delivered Increment.

Events

● The sprint retrospective is usually the last thing done in a sprint.
● You can schedule a scrum retrospective for up to an hour, which is usually quite sufficient.
● The retrospective gives the team the opportunity to identify 3 key aspects:

○ What should starting doing?
○ What did not go well (and stop doing again)?
○ What went well (and should keep doing)?

● Continually improve the team efficiency.

Events

● Think of the backlog as the roadmap of the project.
● As the team collaborates to create a list of everything that needs to be built or done for project

completion, this list can be modified and added to throughout the project to ensure that all of the
necessary needs of the project are met.

● It can be done anytime along the sprint period

Sprint

In the Scrum Framework all activities needed for the implementation of entries from the Scrum
Product Backlog are performed within Sprints (also called ‘Iterations’). Sprints are always short:
normally about 2-4 weeks.

Experienced Scrum Teams spend time and effort to break down complex and larger items (i.e
user features or epics) into smaller user stories (or subsequently breaking down into tasks, or
subtasks).

An epic captures a
large body of work. It
is essentially a “large
user story” that can be
broken down into a
number of smaller
stories.

A story is a brief
statement of a
product
requirement or a
business case.

A task is typically something like “code
this”, “design that”, “create test data for
such-and-such”, and so on. Tend to be
things done by one person. A task is not
written in the user story format. A task
has more a technical nature.

 Milestones > Epics > User Stories > Tasks

Groups of issues
that
Correspond to a
project, feature,
or time period

SCRUM - Framework

Italian Seminars
https://computerscience.unicam.it/nuove-e
d-emergenti-prospettive-la-societa-digitale

My edited seminar on Agile and Scrum:
https://youtu.be/G1IOB8CQll8 (Italian)

Focus of Agile paradigm

The Product Pipeline

Continuous Design Continuous Delivery

Continuous Integration

Continuous Deployment

Roles & Interfaces
DEVELOPER TESTER OPERATORS

Inputs: User stories
Outputs: Software design
& Implementation

Inputs: Working
software, notes on
target behavior
Outputs: Validated
software

Inputs: Validated software
deployment notes
Outputs: Working systems,
monitoring & analytics
thereof evaluates what the
software is doing and if it
behaves as expected

Classic (and Old) Process

Agile

DevOps
“A compound of development (Dev) and operations (Ops), DevOps is the union of
people, process, and technology to continually provide value to customers.

What does DevOps mean for teams? DevOps enables formerly siloed roles —
development, IT operations, quality engineering, and security — to coordinate and
collaborate to produce better, more reliable products. By adopting a DevOps
culture along with DevOps practices and tools, teams gain the ability to better
respond to customer needs, increase confidence in the applications they build,
and achieve business goals faster.”

— Azure.microsoft.com

https://azure.microsoft.com/en-us/overview/what-is-devops/

DevOps

DevOps Technologies

DevOps Technologies

Recap

Waterfall vs Agile vs Scrum vs DevOps
Google Trends indication

https://trends.google.com/trends/explore?date=all&q=%2Fm%2F02zhbn,%2Fm%2F0ck_p8,%2Fm%2F0c3tq11,%2Fm%2F0867l

A Curiosity

DevOpsSec

Rugged DevOps

Incorporate security

If you describe someone's
character as rugged, you mean
that they are strong and
determined, and have the ability
to cope with difficult situations.

Additional Materials
Scrum Field Guide,

The: Agile Advice for Your First Year and Beyond
(Addison-Wesley Signature Series (Cohn)) 2nd Edition

By Mitch Lacey

Additional Materials
Scrum Field Guide,

The: Agile Advice for Your First Year and Beyond
(Addison-Wesley Signature Series (Cohn)) 2nd Edition

By Mitch Lacey

https://www.mountaingoatsoftware.com/

By Mike Cohn

https://www.mountaingoatsoftware.com/

Additional Materials
Accelerate

Building and Scaling High Performing Technology Organizations

By Nicole Forsgren, PhD Jez Humble and Gene Kim

Additional Materials
The DevOps Handbook

How to create world-class agility, reliability, & security in
technology organizations

By Gene Kim, Jez Humble, Patrick Debois, & John Wills

Any Question?

