Unlversita di Camerino

1336

7. Test Adequacy

Test-suites Assessment Using Control Flow and Data Flow

Andrea Polini

Fundamentals of Software Testing
MSc in Computer Science
University of Camerino

(FST) 7. Test Adequacy CS@UNICAM

1/32

|
What is test adequacy?

It is necessary to know if the system has been tested thoroughly. The question is:

Is test suite T good enough?

= = = = = T &

(FST) 7. Test Adequacy CS@UNICAM 2/32

What is test adequacy?
It is necessary to know if the system has been tested thoroughly. The question is:
Is test suite T good enough?

Correspondingly this requires to define an adequacy criterion to make the assessment

Two different classes of criteria - to combine

» Black-box: based on models and requirements

» White-box: based on code

V.
im] =T = - Ty C

(FST) 7. Test Adequacy CS@UNICAM 2/32

What is test adequacy?
It is necessary to know if the system has been tested thoroughly. The question is:
Is test suite T good enough?

Correspondingly this requires to define an adequacy criterion to make the assessment

Two different classes of criteria - to combine

» Black-box: based on models and requirements
» White-box: based on code

Example
Consider a program P developed to satisfy a set of requirements (P,R) (simplified version)
@ R1: Input two integers, x, y, from the standard input device
@ R2: Find and print to the standard output the sum if x < y
@ R3: Find and print to the standard output the product of the two numbers if x > y
@ C: Atest T for program (P,R) is considered adequate if for each requirement r in R there is
at least one test case in T that tests the correctness of P with respect to r

—— == -~

(FST) 7. Test Adequacy CS@UNICAM 2/32

-]
Adequacy criteria push the improvements of test sets

Adequancy criteria are mainly meant as indicators to consider to
improve a test suite.

@ Measure adequacy of T with respect to C. If T is adequante go to 3

@ For each uncovered element e € C, do the following until e is covered or is
determined to be infeasible

@ construct a test t that covers e or will likely cover e
@ execute P against ¢ till no fault is identified

@ if eis covered then t is added to T otherwise the tester can still decide to
add it or to ignore it

© The procedure ends

(FST) 7. Test Adequacy CS@UNICAM 3/32

Example

A program computing x”:
begin
int x,y;
int product, count;
input (x,y);
if (y >= 0) {
product = 1; count = y;
while (count > 0) {
product = product x Xx;
count = count - 1;
}
output (product) ;
}
else
output ("Input does not match its specification");
}

Criteria

C1: Atest setis considered adequate if it tests the program for at least one zero and
one nonzero value of each of the two inputs x and y

C2: Atest setis considered adequate if it tests all paths. In case the program
contains a loop, then it is adequate to traverse the loop body zero times and
once.

(FST) 7. Test Adequacy CS@UNICAM 4/32

|
Infeasibility

It is clearly possible that some criteria could be infeasible given P
structure since some of the paths are not possible

Checking infeasibility is not an easy task that in general cannot be
decided. Is the tester that should decide if a path is feasible or not

begin
int x,y;
int z=0;
input (x,y);
if (x<0 and y<0) {
zZ = X * X;
if (y >= 0) {
z =z + 1;
} else {
Z = X *x X * X;
}
output (z) ;
}

end

(FST) 7. Test Adequacy CS@UNICAM 5/32

Single or multiple executions

When a software keeps state among different runs it could be
necessary to bring the system in a given state before being able to
observe a failure

(FST) 7. Test Adequacy CS@UNICAM 6/32

Criteria based on control flow

The statement coverage of T with respect to (P,R) is computed as
|Scl/(|Se|l — |Si|) where S; is the set of statements covered, S; the set
of unreachable statements, and S, the set of statements in the
program, that is the coverage domain. T is considered adequate with
respect to the statement coverage criterion if the statement coverage
of T with respect to (PR) is 1.

The block coverage of T with respect to (P,R) is computed as
|Bc|/(|Be| — |Bi|) where B is the set of blocks covered, B; the set of
unreachable blocks, and B, the blocks in the program, that is the block
coverage domain. T is considered adequate with respect to the block
coverage criterion if the block coverage of T with respect to (PR) is 1.

(FST) 7. Test Adequacy CS@UNICAM 7/32

Conditions and decisions

@ Conditions can be classified as simple or compound
@ Conditions are generally used to define decision points
@ A decision is covered if the flow has been diverted to all possible destinations

Decision Coverage

The decision coverage of T with respect to (P,R) is computed as |Dc|/(|De| — | Di])
where D, is the set of decisions covered, D; the set of unfeasible decision, and D, the
set of decision in the program, that is the decision coverage domain. T is considered
adequate with respect to the decision coverage criterion if the decision coverage of T
with respect to (PR) is 1.

To be considered are peculiarities related to the switch statements

Condition Coverage

The condition coverage of T with respect to (P,R) is computed as |Cc|/(|Ce| — | Ci|)
where C; is the set of simple conditions covered, C; the set of unfeasible simple
conditions, and Ce is the set of simple conditions in the program, that is the condition
coverage domain. T is considered adequate with respect to the decision coverage
criterion if the decision coverage of T with respect to (P,R) is 1.

= = - = =yt

(FST) 7. Test Adequacy CS@UNICAM 8/32

Condition vs. decision coverage

Condition coverage does not guarantee decision coverage and
viceversa

Condition/decision coverage

The condition/decision coverage of T with respect to (P,R) is computed
as (|Cc| + |De|)/((|Ce| — |Cil) + (|De| — | Di|)) where variable as defined
as before. T is considered adequate with respect to the
condition/decision coverage criterion if the condition/decision coverage
of T with respect to (PR) is 1.

o

(FST) 7. Test Adequacy CS@UNICAM 9/32

Example

Consider a program that takes in input two integers x and y, and returns an integer z according to the following table:

x<0 y<0 output(z)

true true fool (x,y)
true false foo2 (x,y)
false true foo2 (x,y)
false false fool (x,y)

Apply the test suite T = {#; :< x = =3,y = —2 >, f :< x = —4,y = 2 >} to the program below
begin
int x,y,z;
input (x,y);
if (x<0 and y<O0)
z=fool (x,Vy);
else
z=fo02 (x,y);
output (z) ;
end

Now apply the test suites:

> Ti={tf <x=-8,y=-2>bh:<x=4y=-2>}

P Th={t:<x=-8,y=-2>b:<x=4y=2>}

> Ta={f:<x=-3,y=-2>th:<x=—-4y=2>b:<x=4y=-2>}
Which criteria is satisfied?

(FST) 7. Test Adequacy CS@UNICAM 10/32

Multiple Condition Coverage

This criterion aims at assessing the software with all possible
combinations of simple conditions constituting a compound condition

Multiple condition coverage

The multiple condition coverage of T with respect to (P,R) is computed
as |C¢|/(|Ce| — | Ci|) where |C,| denotes the set of combinations
covered, |C;| denotes the set of infeasible simple combinations, and
|Ce| is the total number of combinations in the program. T is
considered adequate with respect to the multiple-condition coverage
criterion if the multiple-condition coverage of T with respect to (PR) is
1.

.

Let’s consider a code composed of n decisions each one including K;
with i € [1--- n] simple conditions. In case all of them are feasible
which is the total number of possible combinations?

= = = = Ty

Example
O

Consider a program that takes in input three integers 2, B and ¢, and returns a value s according
to the following table:

A<B A>C S

true true f1(A,B,C)
true false f2(A,B,C)
false true f3(A,B,C)
false false f4 (A,B,C)

Apply the test suite T ={t{ << A=2,B=3,C=1>,6L:<A=2,B=1,C=3>}tothe
program below

1 begin

2 int A,B,C,S=0;

3 input (A,B,C);

4 if (A<B and A>C) S=fl1(Aa,B,C);

5 if (A<B and A<=C) S=f2(A,B,C);
6 if (A>=B and A<=C) S=f4(A,B,C);
7 output (S) ;
8 end

(FST) 7. Test Adequacy CS@UNICAM 12/32

Modified Condition/Decision Coverage — MC/DC

» Combinations necessary to satisfy the Multiple Condition
Coverage is generally too big.

(FST) 7. Test Adequacy CS@UNICAM 13/32

Modified Condition/Decision Coverage — MC/DC

» Combinations necessary to satisfy the Multiple Condition
Coverage is generally too big.

» MC/DC allows a coverage of all decisions and all conditions
avoiding the exponential explosion

13/32

|
Modified Condition/Decision Coverage — MC/DC

» Combinations necessary to satisfy the Multiple Condition
Coverage is generally too big.

» MC/DC allows a coverage of all decisions and all conditions
avoiding the exponential explosion

» To derive the test set the idea is to identify those tuples which can
cover the two criteria without requiring a complete combinations of
values.

(FST) 7. Test Adequacy CS@UNICAM 13/32

Modified Condition/Decision Coverage — MC/DC

» Combinations necessary to satisfy the Multiple Condition
Coverage is generally too big.

» MC/DC allows a coverage of all decisions and all conditions
avoiding the exponential explosion

» To derive the test set the idea is to identify those tuples which can
cover the two criteria without requiring a complete combinations of
values.

v

Let’s consider the compound condition (C; A Co) V Cs |

|
Definition of MC/DC coverage

The MC/DC criterion requires that:
@ Each block in P has been covered

@ Each simple condition in P has taken both t rue and false value
@ Each decision in P has taken all possible outcomes

@ Each simple condition within a compound condition C in P has
been shown to independently affect the outcome of C (limited to
the simple condition when it occurs more than once).

Measure the 4 different factors separately and for MC:
> MCp = —imt®
¢ Z,I‘\L1(ni_fi)
where n; number of simple conditions, e; single conditions for which independent
effects have been shown, f; number of infeasible conditions.

(FST) 7. Test Adequacy CS@UNICAM 14/32

|
MC/DC comparisons

MC/DC vs. Condition
» Missing conditions
» Incorrect boolean operator
» Mixed type

v

MC/DC vs. Multiple time comparison

n | Multiple Condition | MC/DC | Multiple Condition | MC/DC
1 2 2 2ms 2ms

4 |16 5 16ms 5ms

8 | 256 9 256ms 9ms

16 | 65536 17 65.6s 17ms
32 | 4294967296 33 49.5 days 33ms

(FST) 7. Test Adequacy CS@UNICAM 15/32

|
MC/DC comparisons

MC/DC vs. Condition
» Missing conditions
» Incorrect boolean operator
» Mixed type

v

MC/DC vs. Multiple time comparison

n | Multiple Condition | MC/DC | Multiple Condition | MC/DC
1 2 2 2ms 2ms

4 |16 5 16ms 5ms

8 | 256 9 256ms 9ms

16 | 65536 17 65.6s 17ms
32 | 4294967296 33 49.5 days 33ms

MC/DC and Lazy evaluation

(FST) 7. Test Adequacy CS@UNICAM 15/32

Example

Consider a program conceived to satisfy the following requirements:

Ry: Given coordinate position x, y, and z, and a direction value d, the program must
invoke one of the three functions fire-1, fire-2, and fire-3 as per
conditions below:

Ri.1: Invoke fire-1 when (x<y) and (z*z>y) and (prev="East”) where
prev and current denote, respectively, the previous and current
values of d.

Ri2: Invoke fire-2 when (x<y) and (z+z<y) or (current="South”)

Ri3: Invoke £ire-3 when none of the two conditions above is true

R,: The invocation described above must continue until an input Boolean variable
becomes true

> let’s generate test satisfying the conditions and let's analyze the covered
decision on a possible implementation of the system

(FST) 7. Test Adequacy CS@UNICAM 16/32

Code

A

begin

float x,y,z; direction d; string prev,current; bool done;
input (done); current =’North’;
while (!done) {

input (d) ; prev=current;current=f (d);
if ((x<y) and (zxz>y) and
fire-1(x,vy);
else if ((x<y) and (zxz <= y) or
fire-2(x,vy);
else

input (x,v,2z);
(prev=="East’))

(current == ’South’))

fire-3(x,y); input (done) ;
}
output ('Firing completed’);
end

» generate tests to meet the requirements (4 tests generated)

Test | Req. | done | d x |y

t Ri»> | false | East | 10 | 15
b R 1 false South | 10 | 15
L) Ry 3 false North | 10 | 15
A R, true

O WN

» Which kind of coverage criteria are satisfied by the test set?

(FST) 7. Test Adequacy CS@UNICAM 18/32

» generate tests to meet the requirements (4 tests generated)

Test | Req. | done | d x |y

t Ri»> | false | East | 10 | 15
b R 1 false South | 10 | 15
L) R1 3 false North | 10 | 15
A R, true

O WN

» Which kind of coverage criteria are satisfied by the test set?
» Cover x < y to get condition coverage?

(FST) 7. Test Adequacy CS@UNICAM 18/32

> generate tests to meet the requirements (4 tests generated)

Test | Req. | done | d x |y

t Ri»> | false | East | 10 | 15
b Ry | false | South | 10 | 15
) R1 3 false North | 10 | 15
A Ro true

O W N

» Which kind of coverage criteria are satisfied by the test set?
» Cover x < y to get condition coverage?
» What about Multiple Condition Coverage?

(FST) 7. Test Adequacy CS@UNICAM 18/32

> generate tests to meet the requirements (4 tests generated)

Test | Req. | done | d x |y |z
t Ri> |false | East | 10|15 |3
b Ri4 | false | South | 10 | 15 | 4
I3 Ri3 | false | North | 10 |15 |5
A Ro true

» Which kind of coverage criteria are satisfied by the test set?
» Cover x < y to get condition coverage?

» What about Multiple Condition Coverage?

» What about MC/DC?

(FST) 7. Test Adequacy

CS@UNICAM

18/32

Tracing test cases to requirements

Enhancing a test set we should understand what portions of the
requirements are tested when the program under test is executed
against the newly added test case?

@ Trace back test to requirements is useful when they need to be
modified

(FST) 7. Test Adequacy CS@UNICAM 19/32

Data Flow concepts

@ Criteria considered so far are based on the control flow

@ it is possible to conceive adequacy criteria based on data flow
characteristics
Consider the following program:

begin
int x,y; float z;
input (x,vy);
z=0;
if (x!=0) z=z+y;
else z=z-y;
if (y!=0) z=z/x // Should be (y!=0 and x!=0)
else z=zx*x;
output (z) ;
end

(FST) 7. Test Adequacy CS@UNICAM

20/32

Data Flow concepts

@ Criteria considered so far are based on the control flow

@ it is possible to conceive adequacy criteria based on data flow
characteristics
Consider the following program:

begin
int x,y; float z;
input (x,vy);
z=0;
if (x!=0) z=z+y;
else z=z-y;
if (y!=0) z=z/x // Should be (y!=0 and x!=0)
else z=zx*x;
output (z) ;
end

An MC/DC test set could not reveal the error while a test set based on definition and
usage of variables would have been able
(FST) 7. Test Adequacy CS@UNICAM 20/32

Data flow criteria

0

» Data flow criteria based on two main concepts:

e Definitions — points in which a variable is defined (e.g.
assignements, input statements)
e Uses — points in which a variable is accessed
@ computational usage - c-use
@ predicate usage - p-use

» Which are the effect of parameter passing (by value or by reference)?

input (x,vy); z=0;

z = x+1

A[x-11=B[2];

foo (x*x);

output (z) ;

if (z>0) output(x);

if (A[x+1]>0) output (x);

(FST) 7. Test Adequacy CS@UNICAM 21/32

|
Global, Local and Pointers

Variables can be defined in a block, used and redefined (killed) within the same block.
Effects can also be available outside the block:

> p = y+tz; x = p+tl; p = z*xz;

Definition and use of variables can be referred to:
@ local

@ global

The use of pointers makes the data flow analysis rather complex:

Z=&X;
y=z+1;
*z=25;
y=+z+1;

(FST) 7. Test Adequacy CS@UNICAM 22/32

|
Data Flow Graph

A data-flow graph of a program (aka def-use graph) captures the flow
of definitions across the basic blocks constituting the program. The
graph can be constructed in the following way:
@ Construct def;, ¢ — use;, p — use; for each basic block i in P
© Associate each node i in N with def;, ¢ — use;, p — use;
© For each node i that has a non empty p — use set and ends in
condition C, associate edges (i,) and (i, k) with C and !C,
respectively.

(FST) 7. Test Adequacy CS@UNICAM 23/32

Data flow graph

Build the DFG for the following piece of code:
(0

begin
int x,vy,2z;

input (x,vy); z=0;
if (x<0 and y<0)

Z=X*xX;

if (y>=0) z=z+1;

}

else z=x*X*X;

output (z) ;
end

(FST)

7. Test Adequacy

CS@UNICAM

24/32

|
Example

Let’s build a def-use graph for the following program:
begin
float x,vy,2z=0.0; int count; input
do {
if (x<=0) {
if (y>= 0 {
z=y*z+1;

(x,y,count) ;

}
} else { z= 1/x; }
y=xxy+z; count = count -1;
} while (count > 0)
output (z) ;
end

(FST) 7. Test Adequacy CS@UNICAM

25/32

|
Example

Let’s build a def-use graph for the following program:
begin
float x,vy,2z=0.0; int count; input
do {
if (x<=0) {
if (y>= 0 {
z=y*z+1;

(x,y,count) ;

}
} else { z= 1/x; }
y=xxy+z; count = count -1;
} while (count > 0)
output (z) ;
end

Which are the blocks?

(FST) 7. Test Adequacy CS@UNICAM

25/32

Definitions

def-clear paths

A def-clear path for a variable x is a path from a definition of the
variable to a usage without further definitions in the intermediate
nodes of the path

live definition

A definition at node i is live at node j if there is no intermediate
definition in a path from i to j

(FST) 7. Test Adequacy CS@UNICAM 26/32

Def-use pairs

A def-use pair for a variable X’ refers to a definition d and a usage u on a def-clear
path

For each variable definition dj(x) there is:

@ adcu(di(x)) set, that is constituted by all nodes j in any def-clear path from node
i such that u;(x) in relation to a c-use

@ adpu(di(x)) set, that is constituted by all sets of edges leaving a node ; for
which there is a def-clear path from i and u;(x) in relation to a p-use

Def-use pairs

A def-use pair for a variable X’ refers to a definition d and a usage u on a def-clear
path

For each variable definition dj(x) there is:

@ adcu(di(x)) set, that is constituted by all nodes j in any def-clear path from node
i such that u;(x) in relation to a c-use

@ adpu(di(x)) set, that is constituted by all sets of edges leaving a node ; for
which there is a def-clear path from i and u;(x) in relation to a p-use

Let’s fill the table for the previous DFG

Variable(v) | Defined at node(n) | dcu(v,n) | dpu(v,n)

(FST) 7. Test Adequacy CS@UNICAM 27/32

Def-use chains
—

A def-use chain (aka k-dr interaction) is constituted by path including a
sequence of alternating def-use pairs. It is also possible to consider
different variables E.g. consider the def-use chain for y and z and the
sequence of nodes in which they are considered

Def-use optimization

Some def-use can subsume other relations. E.g. z defined in node 1
subsumes y defined in node 1

| A\

Let’s fill the table for the previous DFG

Variable(v) | Defined at node(n) | dcu(v,n) | dpu(v,n)

(FST) 7. Test Adequacy CS@UNICAM 28/32

Adequacy criteria for data-flow

Given the total number of c-uses (CU) and p-uses (PU) for all variable
definitions we can define different coverage criteria for data-flow.

gj
CU =11 ,x; . |deu(v;,)|

PU=x7 5 |dpu(v;,)|

where v = {vq, vo,..., vy} is the set of variables in a program and
n={ny,no,...,ng}is the set of blocks in the same program

(FST) 7. Test Adequacy CS@UNICAM 29/32

Coverage

C-use coverage
The c-use coverage of T with respect to (P,R) is computed as:

CUg
CU—CU;

where CU. is the number of c-uses covered and CU; the number of infeasible c-uses.

T is considered adequate with respect to the c-use coverage criterion if its c-use
coverage is 1.

(FST) 7. Test Adequacy CS@UNICAM

30/32

Coverage

C-use coverage

The c-use coverage of T with respect to (P,R) is computed as:

CUg
CU—CU;

where CU. is the number of c-uses covered and CUs the number of infeasible c-uses.
T is considered adequate with respect to the c-use coverage criterion if its c-use
coverage is 1.

P-use coverage

The p-use coverage of T with respect to (P,R) is computed as:

PUc
PU—PU;
where PU. is the number of p-uses covered and PUr the number of infeasible p-uses.
T is considered adequate with respect to the p-use coverage criterion if its p-use
coverage is 1.

(FST) 7. Test Adequacy CS@UNICAM 30/32

Coverage’s

All-uses coverage
The all-uses coverage of T with respect to (P,R) is computed as:

CUc+PUc
(CU+PU)—(CUs+PUy)

where CU; and PU; are the number of c-uses and p-uses covered respectively. CUs
and PUr are the number of infeasible c-uses and p-uses respectively. T is considered
adequate with respect to the all-uses coverage criterion if its all-uses coverage is 1.

(FST) 7. Test Adequacy

CS@UNICAM

V.
S Reu(

31/32

Coverage’s

All-uses coverage

The all-uses coverage of T with respect to (P,R) is computed as:

CUc+PUc
(CU+PU)—(CUs+PUy)

where CU; and PU; are the number of c-uses and p-uses covered respectively. CUs
and PUr are the number of infeasible c-uses and p-uses respectively. T is considered
adequate with respect to the all-uses coverage criterion if its all-uses coverage is 1.

k-dr chain coverage

For a given K > 2 the kdr(k) coverage of T with respect to (P,R) is computed as:

24

3 3
Ck—CF

where C¥ is the number of k-dr interactions covered, C* is the number of elements in
K-dr(k), and CK the number of infeasible interactions in k.dr(k). T is considered
adequate with respect to the kdr(k)coverage criterion if its k-dr(k) coverage is 1.

] = = = Ty

(FST) 7. Test Adequacy CS@UNICAM 31/32

I
Control flow vs. Data Flow

The subsumes relation

A coverage criterion C1 subsumes a coverage criterion C2 iff
whenever the satisfaction of C1 implies the satisfaction of C2

input domain

!

all paths

/

all-uses multiple conditions

/N

c-uses p-uses

\ condition/decision

decision

!

block

Figure: The subsumes relationship among the studied coverage criterion

(FST)

7. Test Adequacy CS@UNICAM 32/32

