
Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Ontology Engineering

Knut Hinkelmann

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Knowledge-Representation and Reasoning

Knowledge
Base

Reality

Reasoning/Inference

machine-interpretable models

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

■ An ontology consists of
♦ Concepts (Classes),
♦ Relationships (Object Properties) between

concepts
♦ Attributes (Data Properties) of concepts
♦ Constraints that hold between/for the

concepts,

■ An ontology together with a set of individual
instances constitutes a knowledge base

An Ontology – very informal

https://people.cs.uct.ac.za/~mkeet/OEbook/slides/L1IntroOE19.pptx

An ontology is a formal explicit description
of concepts in a domain of discourse

Golden Gate
Bridge

rope bridge

real object

bridge

instance of

subclass-of

"Orange"
has color

has color

material
made of

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

ontology engineering
is

knowledge engineering

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

On
to

lo
gy

Example of an Ontology

lecturer

knut

module

projectcourse

"Knut Hinkelmann"
6

RMCS

Knowledge Engineering

holger KE

Research Methods«Holger Wache"

is_taught_by

is_taught_by
rdf:type

rdf:type

rdfs:SubclassOf

rdfs:SubclassOf

credits

has_name has_name has_title
has_title

3

credits

rdf:typerdf:type

is_taught_by

In
st

an
ce

s

academic
staff

rdfs:SubclassOf

is_taught_by
range domain

string

has_name
range

domain

credits
range

domain

integer

switzerland
lives_in

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

■ Representations of Ontologies
♦ RDF(S)
♦ OWL
♦ Neo4J
♦ …

Ontology Representation Formalisms

Our focus

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Tools: Examples of Programming Libraries

EasyRDF for PHP: https://www.easyrdf.org/

RDFLib for Python: https://rdflib.readthedocs.io/en/stable/

Apache Jena for Java: https://jena.apache.org/

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Tool: Ontology Engineering

https://protege.stanford.edu/

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

■ Defining classes in the ontology

■ Arranging the classes in a taxonomic (subclass-superclass)
hierarchy

■ Defining properties and describing allowed values for the
properties

■ Creating instances and filling the values for properties

Creating an Ontology

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

■ There are several approaches
♦ Top-down: Start with the most

general concept, and work your
way down

♦ Bottom-up: Start with the most
specific, and work your way up

♦ Combination

Define Classes and Class Hierarchy

:Academic_Staff rdf:type owl:Class .
:lecturer rdf:type owl:Class ;

rdfs:subClassOf :Academic_Staff .
:module rdf:type owl:Class .
:course rdf:type owl:Class ;

rdfs:subClassOf :module .

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

■ Describe the internal structure of concepts
♦ Data Properties: Attributes

●Range are data types like String, Integer, …
♦ Object Properties: Relations to other concepts

●Range are Classes

■ Desribe facets: Characteristics of Properties

■ Inheritance to Subclasses

Define Properties of Classes

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Object Property

facets

:is_taught_by rdf:type owl:DatatypeProperty ;
rdfs:subPropertyOf owl:topObjectProperty ;
rdfs:domain :module;
rdfs:range :lecturer .

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Data Property
:name rdf:type owl:DatatypeProperty ;

rdfs:subPropertyOf owl:topDataProperty ;
rdfs:domain :Academic_Staff ;
rdfs:range xsd:string .

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Data Property
:credits rdf:type owl:DatatypeProperty ;

rdfs:subPropertyOf owl:topDataProperty ;
rdfs:domain :module;
rdfs:range xsd:integer .

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Individuals

:KE rdf:type owl:NamedIndividual ,
:course ;

:is_taught_by :knut ;
:credits 6 ;
:title "Knowledge Engineering" .

:knut rdf:type owl:NamedIndividual ,
:lecturer ;

:name "Knut Hinkelmann" .

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

■ Add new class: country

■ Add a property: A lecturer lives in a country

■ Add new instance: Knut lives in Switzerland

■ Add new classes and properties for the following knowledge
♦ A project is a module
♦ A Master Thesis is a project
♦ Supervisor is a lecturer
♦ A project has a supervisor
♦ A project is performed by a student

■ Add new instances
♦ Giordano is a student who is performing a master thesis that is

supervised by knut

Exercise

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

■ Queries are mostly about navigating the graph in search of some patterns

■ Sample types of queries
♦ Navigating along a graph path, e.g who are the lecturers of KE

SELECT ?x WHERE {:KE :is_taught_by ?x}
♦ Navigating along a graph path with intermediate values, e.g. what are the names

of the lecturers of KE
SELECT ?x ?y WHERE {:KE :is_taught_by ?x.

?x :has_name ?y}
♦ Navigating a path in reverse, e.g which modules is knut teaching

SELECT ?x WHERE {?x :is_taught_by :knut}
♦ Discover relationships, what is the relationship between KE and knut

SELECT ?rel WHERE {:KE ?rel :knut}
♦ Chain of relationships, what chain exists between KE and switzerland

SELECT ?rel1 ?y ?rel2 WHERE {:KE ?rel1 ?y.
?y ?rel2 :switzerland}

Querying an Ontology

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

■ Query Language: SPARQL
♦ Variables: ?x

■ Elements are denoted as URI
♦ Prefixes for Abbrevations

● Example: PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

■ Sample query: Select all lecturers:

Querying

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX uo: <http://www.semanticweb.org/knut.hinkelmann/ontologies/2020/4/UniversityOntology#>
SELECT ?subject

WHERE { ?subject rdf:type uo:lecturer }

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

RDF Graphs vs Databases

In SQL databases, you cannot do anything before having a schema
(the "DB structure")

Records

In RDF graphs, schema is decoupled from "records"

Records

Schema

■ Schema can be created after data
■ Schema is optional (data can be

queried in the absence of a schema)

Restrictive schema

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Ontologies and Rules

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

■ SWRL is a rule language for the Semantic Web

■ Rules are of the form of an implication between
♦ an antecedent (body, condition) and
♦ a consequent (head, conclusion)

■ There are different representations for SWRL rules:
♦ Human Readable Syntax
♦ XML Concrete Syntax
♦ RDF Concrete Syntax

SWRL – Semantic Web Rule Language

https://www.w3.org/Submission/SWRL/

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

■ Variables are same as SPARQL, indidated by ?
?x, ?something, ?object

■ In the human readable syntAntecedent and consequent are
separated by ⇒
(in Protégé type -> instead of ⇒)
hasParent(?x1,?x2) ^ hasBrother(?x2,?x3) -> hasUncle(?x1,?x3)

Human Readable Syntax

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

■ This is the XML Syntax of the uncle rule:

XML Concrete Syntax

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

■ The following rules derives the inverse of the proprerty
is_taught_by

ke:module(?l) ^ ke:is_taught_by(?c, ?l) -> ke:teaches(?l, ?c)
♦ The rules means:

If a course ?c is taught by lecturer ?l, then lecturer ?l teaches course ?c
♦ To run the rules there must be defined object property teaches

has domain lecturer and range course

Rules in Protege

knut

"Knut Hinkelmann"
6

RMCS

Knowledge Engineering

holger

KE

Research Methods«Holger Wache"

is_taught_by

is_taught_by

credits

has_name has_name has_title
has_title

3

credits

is_taught_by

teaches

teaches

teaches

Properties
derived by
the rule

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

■ In Protege there is a SWRLTab

■ In this tab you specify rules

■ To execute the rules, a reasoner must be started
♦ In the menu Reasoner select reasoner HermiT and start the

reasoner

Rules in Protege

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Ontology Development 101

(Noy & McGuinness 2001)

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

■ We create a knowledge base for process knowledge
♦ Define the ontology
♦ Represent knowledge of a process

Exercise: Modeling Process Knowledge in an Ontology

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Ontology Development 101

1 • Determine the domain and scope of the ontology

2 • Consider reusing existing ontologies

3 • Enumerate important terms

4 • Define classes and class hierarchy

5 • Define the data and object properties of classes

6 • Define the facets of properties

7 • Create instances

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

■ What is the domain that the ontology will cover?

■ For what we are going to use the ontology?

■ For what types of questions the information in the ontology
should provide answers?  Competency questions

■ Who will use and maintain the ontology?

Determine the domain and scope of the ontology
1

•

2

•

3

•

4

•

5

•

6

•

7

•

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

■ One of the ways to determine the scope of the ontology is to
sketch a list of questions that a knowledge base based on the
ontology should be able to answer (Gruninger and Fox 1995)
♦ Does the ontology contain enough information to answer

these types of questions?
♦ Do the answers require a particular level of detail or

representation of a particular area?

Competency Questions
1

•

2

•

3

•

4

•

5

•

6

•

7

•

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

■ Exercise: We want to represent knowledge about
♦ the process flow
♦ Responsibilies for tasks

■ Competency Questions:
●Who executes task X?
●Which task is executed after task X?
●When can task X start?

The waiter serves the beverages. Then the waiter serves the
food. When the guests are finished, the waiter presents the bill.

■ Sample process:

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

■ It is always worth considering what others have done, and
check if their work can be refined and extended for our
particular domain and task

■ Mandatory if the system needs to interact with other
applications that have already committed to particular
ontologies or controlled vocabularies

Consider reusing existing ontologies
1

•

2

•

3

•

4

•

5

•

6

•

7

•

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

■ Are there already ontologies for business processes?

■ What source can we use to create an ontology for business
processes?

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

■ What are the terms we would like to talk about?

■ What are their properties?

■ What would we like to say about those terms?

Enumerate important terms in the ontology

https://www.menti.com/dkpew59hq4

1
•

2

•

3

•

4

•

5

•

6

•

7

•

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

■ Taking into account your knowledge about business
processes modelling, what are important terms that are
needed to answer the competency questions?

●Who executes task X?
●Which task is executed after task X?
●When can task X start?

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

■ Several possible approaches in developing a class hierarchy:
♦ Top-down: General to specific concepts
♦ Bottom-up: Specific to general concepts
♦ Combination: Salient to general and specific concepts

■ Classes for
♦ Modeling Objects
♦ Relations

Define Classes and Class Hierarchy
1

•

2

•

3

•

4

•

5

•

6

•

7

•

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

■ Taking into account your knowledge about business
processes modelling, how can we create a class hierarchy?

■ Which terms should be classes?

■ What are subclasses?

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

■ Describe the internal structure of concepts
♦ Data Properties: Attributes

●Range are data typles like String, Integer, …
♦ Object Properties: Relations to other concepts

●Range are Classes

■ Inheritance to Subclasses

Define the properties of classes
1

•

2

•

3

•

4

•

5

•

6

•

7

•

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

■ Which data and object properties make sense for modelling
business processes?

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

■ Model a business process in an ontology

Create Instances
1

•

2

•

3

•

4

•

5

•

6

•

7

•

The waiter serves the beverages. Then the
waiter serves the food. When the guests are
finished, the waiter presents the bill.

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Modeling Business Processes as
graphical models is more adequate

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

■ Write queries for the following questions
♦ Who performs task «Serve food»
♦ When can task «Present Bill» start

Queries

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Elements of BPMN

Flow Objects Connectors Artefacts Swimlanes

Elements of BPMN can be divided into 4 categories:

Events

Activities

Gateways

Sequence Flow

Message Flow

Associations

Data Objects

Text Annotation

Group

Pool

Lanes (within a Pool)

text

	Ontology Engineering
	Knowledge-Representation and Reasoning
	An Ontology – very informal
	Slide Number 4
	Example of an Ontology
	Ontology Representation Formalisms
	Tools: Examples of Programming Libraries
	Tool: Ontology Engineering
	Creating an Ontology
	Define Classes and Class Hierarchy
	Define Properties of Classes
	Object Property
	Data Property
	Data Property
	Individuals
	Exercise
	Querying an Ontology
	Querying
	RDF Graphs vs Databases
	Ontologies and Rules
	SWRL – Semantic Web Rule Language
	Human Readable Syntax
	XML Concrete Syntax
	Rules in Protege
	Rules in Protege
	Ontology Development 101
	Exercise: Modeling Process Knowledge in an Ontology
	Ontology Development 101
	Determine the domain and scope of the ontology
	Competency Questions
	Slide Number 31
	Consider reusing existing ontologies
	Slide Number 33
	Enumerate important terms in the ontology
	Slide Number 35
	Define Classes and Class Hierarchy
	Slide Number 37
	Define the properties of classes
	Slide Number 39
	Create Instances
	Slide Number 41
	Queries
	Elements of BPMN

