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■ An ontology consists of
♦ Concepts (Classes), 
♦ Relationships (Object Properties) between 

concepts
♦ Attributes (Data Properties) of concepts
♦ Constraints that hold  between/for the 

concepts, 

■ An ontology together with a set of individual 
instances constitutes a knowledge base

An Ontology – very informal

https://people.cs.uct.ac.za/~mkeet/OEbook/slides/L1IntroOE19.pptx

An ontology is a formal explicit description 
of concepts in a domain of discourse 
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ontology engineering 
is

knowledge engineering
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■ Representations of Ontologies
♦ RDF(S)
♦ OWL
♦ Neo4J
♦ …

Ontology Representation Formalisms

Our focus
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Tools: Examples of Programming Libraries

EasyRDF for PHP: https://www.easyrdf.org/

RDFLib for Python: https://rdflib.readthedocs.io/en/stable/

Apache  Jena for Java: https://jena.apache.org/



Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Tool: Ontology Engineering

https://protege.stanford.edu/
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■ Defining classes in the ontology 

■ Arranging the classes in a taxonomic (subclass-superclass) 
hierarchy 

■ Defining properties and describing allowed values for the 
properties 

■ Creating instances and filling the values for properties

Creating  an Ontology
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■ There are several approaches
♦ Top-down: Start with the most 

general concept, and work your 
way down 

♦ Bottom-up: Start with the most 
specific, and work your way up 

♦ Combination

Define Classes and Class Hierarchy

:Academic_Staff rdf:type owl:Class .
:lecturer rdf:type owl:Class ;

rdfs:subClassOf :Academic_Staff . 
:module rdf:type owl:Class .
:course rdf:type owl:Class ;

rdfs:subClassOf :module . 
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■ Describe the internal structure of concepts
♦ Data Properties: Attributes

●Range are data types like String, Integer, …
♦ Object Properties: Relations to other concepts

●Range are Classes

■ Desribe facets: Characteristics of Properties

■ Inheritance to Subclasses

Define Properties of Classes
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Object Property

facets

:is_taught_by rdf:type owl:DatatypeProperty ;
rdfs:subPropertyOf owl:topObjectProperty ;
rdfs:domain :module;
rdfs:range :lecturer .
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Data Property
:name rdf:type owl:DatatypeProperty ;

rdfs:subPropertyOf owl:topDataProperty ;
rdfs:domain :Academic_Staff ;
rdfs:range xsd:string .
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Data Property
:credits rdf:type owl:DatatypeProperty ;

rdfs:subPropertyOf owl:topDataProperty ;
rdfs:domain :module;
rdfs:range xsd:integer .
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Individuals

:KE rdf:type owl:NamedIndividual , 
:course ;

:is_taught_by :knut ;
:credits 6 ;
:title "Knowledge Engineering" . 

:knut rdf:type owl:NamedIndividual ,
:lecturer ;

:name "Knut Hinkelmann" . 
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■ Add new class: country

■ Add a property: A lecturer lives in a country

■ Add new instance: Knut lives in Switzerland

■ Add new classes and properties for the following knowledge
♦ A project is a module
♦ A Master Thesis is a project
♦ Supervisor is a lecturer
♦ A project has a supervisor
♦ A project is performed by a student

■ Add  new instances
♦ Giordano is a student who is performing a master thesis that is

supervised by knut

Exercise



Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

■ Queries are mostly about navigating the graph in search of some patterns

■ Sample types of queries
♦ Navigating along a graph path, e.g who are the lecturers of KE

SELECT ?x WHERE {:KE :is_taught_by ?x}
♦ Navigating along a graph path  with intermediate values, e.g. what are the names 

of the lecturers of KE
SELECT ?x ?y WHERE {:KE :is_taught_by ?x.

?x :has_name ?y}
♦ Navigating a path in reverse, e.g which modules is knut teaching

SELECT ?x WHERE {?x :is_taught_by :knut}
♦ Discover relationships, what is the relationship between KE and knut

SELECT ?rel WHERE {:KE ?rel :knut}
♦ Chain of relationships, what chain exists  between KE and switzerland

SELECT ?rel1 ?y ?rel2 WHERE {:KE ?rel1 ?y.
?y ?rel2 :switzerland}

Querying an Ontology
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■ Query Language: SPARQL
♦ Variables: ?x

■ Elements are denoted as URI
♦ Prefixes for Abbrevations

● Example: PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

■ Sample query: Select all lecturers:

Querying

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX uo: <http://www.semanticweb.org/knut.hinkelmann/ontologies/2020/4/UniversityOntology#>
SELECT ?subject

WHERE { ?subject rdf:type uo:lecturer }
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RDF Graphs vs Databases

In SQL databases, you cannot do anything before having a schema 
(the "DB structure")

Records

In RDF graphs, schema is decoupled from "records"

Records

Schema

■ Schema can be created after data
■ Schema is optional (data can be 

queried in the absence of a schema)

Restrictive schema
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Ontologies and Rules
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■ SWRL is a rule language for the Semantic Web 

■ Rules are of the form of an implication between 
♦ an antecedent (body, condition) and 
♦ a consequent (head, conclusion)

■ There are different  representations for SWRL rules:
♦ Human Readable Syntax
♦ XML Concrete Syntax
♦ RDF Concrete Syntax

SWRL – Semantic Web Rule Language

https://www.w3.org/Submission/SWRL/
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■ Variables are same as SPARQL,  indidated by ?
?x, ?something, ?object

■ In the human readable syntAntecedent and consequent are 
separated by ⇒
(in Protégé type -> instead of ⇒ )
hasParent(?x1,?x2) ^ hasBrother(?x2,?x3) -> hasUncle(?x1,?x3)

Human Readable Syntax
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■ This is the XML Syntax of the uncle rule:

XML Concrete Syntax



Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

■ The following rules derives the inverse of the proprerty
is_taught_by

ke:module(?l) ^ ke:is_taught_by(?c, ?l) -> ke:teaches(?l, ?c)
♦ The rules means: 

If a course ?c is taught by lecturer ?l, then lecturer ?l teaches course ?c
♦ To run the rules there must be defined object property teaches

has domain lecturer and range course

Rules in Protege
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■ In Protege there is a SWRLTab

■ In this tab you specify rules

■ To execute the rules, a reasoner must be started
♦ In the menu Reasoner select reasoner HermiT and start the

reasoner

Rules in Protege
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Ontology Development 101

(Noy & McGuinness 2001)
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■ We create a knowledge base for process knowledge
♦ Define the ontology
♦ Represent knowledge of a process

Exercise: Modeling Process Knowledge in an Ontology
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Ontology Development 101

1 • Determine the domain and scope of the ontology

2 • Consider reusing existing ontologies

3 • Enumerate important terms

4 • Define classes and class hierarchy

5 • Define the data and object properties of classes

6 • Define the facets of properties 

7 • Create instances
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■ What is the domain that the ontology will cover? 

■ For what we are going to use the ontology? 

■ For what types of questions the information in the ontology 
should provide answers?  Competency questions

■ Who will use and maintain the ontology?

Determine the domain and scope of the ontology 
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■ One of the ways to determine the scope of the ontology is to 
sketch a list of questions that a knowledge base based on the 
ontology should be able to answer (Gruninger and Fox 1995)
♦ Does the ontology contain enough information to answer 

these types of questions? 
♦ Do the answers require a particular level of detail or 

representation of a particular area?

Competency Questions
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■ Exercise: We want to represent knowledge about
♦ the process flow
♦ Responsibilies for tasks

■ Competency Questions:
●Who executes task X?
●Which task is executed after task X?
●When can task X start?

The waiter serves the beverages. Then the waiter serves the
food. When the guests are finished, the waiter presents the bill.

■ Sample process: 
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■ It is always worth considering what others have done, and 
check if their work can be refined and extended for our 
particular domain and task

■ Mandatory if the system needs to interact with other 
applications that have already committed to particular 
ontologies or controlled vocabularies

Consider reusing existing ontologies
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■ Are there already ontologies for business processes?

■ What source can we use to create an ontology for business
processes?
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■ What are the terms we would like to talk about? 

■ What are their properties?

■ What would we like to say about those terms?

Enumerate important terms in the ontology

https://www.menti.com/dkpew59hq4

1
•

2

•

3

•

4

•

5

•

6

•

7

•



Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

■ Taking into account your knowledge about business
processes modelling, what are important terms that are
needed to answer the competency questions?

●Who executes task X?
●Which task is executed after task X?
●When can task X start?
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■ Several possible approaches in developing a class hierarchy:
♦ Top-down:  General to specific concepts
♦ Bottom-up: Specific to general concepts
♦ Combination: Salient to general and specific concepts

■ Classes for
♦ Modeling Objects
♦ Relations

Define Classes and Class Hierarchy
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■ Taking into account your knowledge about business
processes modelling, how can we create a class hierarchy?

■ Which terms should be classes?

■ What are subclasses?
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■ Describe the internal structure of concepts
♦ Data Properties: Attributes

●Range are data typles like String, Integer, …
♦ Object Properties: Relations to other concepts

●Range are Classes

■ Inheritance to Subclasses

Define the properties of classes
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■ Which data and object properties make sense for modelling
business processes?
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■ Model a business process in an ontology

Create Instances
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The waiter serves the beverages. Then the
waiter serves the food. When the guests are
finished, the waiter presents the bill.
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Modeling Business Processes as
graphical models is more adequate
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■ Write queries for the following questions
♦ Who performs task «Serve food»
♦ When can task «Present Bill» start

Queries
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Elements of BPMN

Flow Objects Connectors Artefacts Swimlanes

Elements of BPMN can be divided into 4 categories:

Events

Activities

Gateways

Sequence Flow 

Message Flow

Associations

Data Objects

Text Annotation

Group

Pool

Lanes (within a Pool)

text
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