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Knowledge Engineering
 Knowledge Engineering is the process of 

 building and
 maintaining

 knowledge-based systems or intelligent agents

 “Knowledge Engineering is an engineering 
discipline that involves integrating knowledge 
into computer systems in order to solve 
complex problems normally requiring a high 
level of human expertise.“1)

 Sources of knowledge
 Human experts
 Documentation

1) Feigenbaum, E., and P. McCorduck. (1983). The Fifth Generation. Reading, MA: Addison-Wesley 
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Drawbacks of Knowledge  Engineering

 Effort to …
… build the knowledge base
… maintain the knowledge base

 Availability of knowledge

 Awareness of knowledge
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Machine Learning: 
Make Knowledge explicit with the Use of Data
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From data (texts or structured data) it is possible to learn tacit knowledge and new knowledge
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Machine Learning: General Idea

 Learning/Training
 Collect data for the problem
 Use the data to learn how to 

solve the type of problem 
 Result: Knowledge

 Application
 Use the learned knowledge for 

new problems

training
data

problem

solution

Learning knowledge

Training phase Application phase
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Machine Learning in Context
 Machine Learning (Data Mining) is a step 

to discover knowledge in data

Target Data

(Fayyad et al., 1996)

Learned Knowledge can then be applied to solve problems, make decisions.

Data Mining/ 
Learning
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Symbolic vs Subsymbolic Learning
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Learning Rules 
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 The learning method depends on the kind 
of data that we have at our disposal
 The data contains sets of inputs and 

corresponding outputs: (i,o)
 No prior knowledge: The data contains 

only the inputs i: output has to be 
determined

 The data contains sets of inputs without 
corresponding «correct» output, but we 
can get some measure of the quality of 
an output o for input i. 
Rewards for good output quality.

Types of Learning

Supervised
Learning

Unsupervised
Learning

Reinforcement
Learning

(Lison, 2012)
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Supervised Learning: Application Examples

(Lison, 2012)
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Classification
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Supervised Learning

(Lison, 2012)

Example: Classification
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Classification
 Assign objects (input) to known classes 

(output)

 Examples:
 credit assessment

Input: customers of a bank
Classes: credit worthy

not credit worthy

 Spam filtering
Input: email
Classes: spam

non-spam

 optical character recognition (OCR)
Input: scanned pixel image
Classes: ASCII characters
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Spam Filter
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Supervised Learning: Classification Criteria
 The classifier decides, which 

individual belongs to which 
class

 Problem:
 Input has different features
 The criteria for the decision are 

not always obvious

 Supervised Learning:
 Learn the classification criteria 

from known examples
 Criteria = relevant features and 

their valures

Classifier

individuals

classes
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Features:
- color
- shape
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Example  for Supervised Subsymbolic  Learning
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Training with large sets of data

Application: cat or dog?



Prof. Dr. Knut Hinkelmann

Example for Supervised Symbolic Learning
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Problem: When to give credit

NO

Employed

Marital Status

TaxIncome TaxIncome

YES YESNONO

No Yes

Single, Divorced Married

<=80K >80K
<=100K >100K

Knowledge Base: Decision TreeTraining Data , Decision Table
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 Sometimes, we don’t have access to any output value o, we 
simply have a collection of input examples i

 Input: data sets without corresponding output values. 

 Objective: learn the underlying patterns of our data
 Are there any correlations between features?
 Can we cluster our data set in groups which behave similarly?

Unsupervised Learning

(Lison, 2012)
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Example: Recommender Systems
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Reinforcement Learning
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 Sometimes we don’t have direct access to «the» correct 
output o for an input i

 But we can get a measure of «how good/bad» an output is
 Often called the reward (can be negative or positive)

 The goal of the agent is to learn the behaviour that 
maximises its expected cumulative reward over time
 To learn how to flip pancakes, the reward could for instance 

be +3 if the pancake is flipped, -1 if the pancake stays in the 
pan, and -5 if it falls

Reinforcement Learning
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