
Parallel and
Distributed
Programming

Hello!
I am Diego Bonura

Mi occupo di:

• Frontend

• Backend

• Mobile

• IoT

• R&D

diego@bonura.dev

https://medium.com/@diegobonura

2

mailto:diego@bonura.dev
https://medium.com/@diegobonura

“

3

“

Distribuited programming is complex

4

Use only on complex applications

5

.

6

.

Why?

7

◎ Performance
○ Maintains System Performance During High Demand Periods
○ Adapts to the Increase/Decrease Workloads and User Demands

◎ Scalability
○ Boosts Performance and Utilization through Collaboration

◎ Resilience
○ Ensures System Continuity in the Face of Failures

◎ Redundancy
○ Enhances User Experience with Geographically Distributed

Systems

https://youtu.be/CZ3wIuvmHeM?si=eHlQEqZkHpZWhHDm&t=604

https://youtu.be/CZ3wIuvmHeM?si=eHlQEqZkHpZWhHDm&t=604

How?

8

Main types:

◎ Cluster Computing
○ https://www.mongodb.com/basics/clusters
○ https://www.elastic.co/guide/en/elasticsearch/refere

nce/current/high-availability.html

◎ Grid computing
○ https://en.wikipedia.org/wiki/Great_Internet_Mersen

ne_Prime_Search
○ https://en.wikipedia.org/wiki/SETI@home

◎ Cloud computing
○ https://www.linkedin.com/pulse/how-cloud-

computing-made-netflix-possible-keimo-edwards/
○ https://cloudacademy.com/blog/aws-reinvent-

netflix/

◎ Peer-2-Peer
○ Torrent
○ Bitcoin

https://www.mongodb.com/basics/clusters
https://www.elastic.co/guide/en/elasticsearch/reference/current/high-availability.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/high-availability.html
https://en.wikipedia.org/wiki/Great_Internet_Mersenne_Prime_Search
https://en.wikipedia.org/wiki/Great_Internet_Mersenne_Prime_Search
https://en.wikipedia.org/wiki/SETI@home
https://www.linkedin.com/pulse/how-cloud-computing-made-netflix-possible-keimo-edwards/
https://www.linkedin.com/pulse/how-cloud-computing-made-netflix-possible-keimo-edwards/
https://cloudacademy.com/blog/aws-reinvent-netflix/
https://cloudacademy.com/blog/aws-reinvent-netflix/

Example of complex system?

9

Two of Twitter’s main operations are:
Post tweet
• A user can publish a new message to their followers (4.6k requests/sec on average, over 12k

requests/sec at peak).
Home timeline
• A user can view tweets posted by the people they follow (300k requests/sec)….
• ….

Continue to book «Designing Data-Intensive Applications» page 11

Main agenda

10

◎ Object oriented programming (message passing)

◎ Async programming

◎ In-process / out-of-process programming

◎ Distributed programming
○ Message brokers
○ Actor Model
○ Serialization
○ Transaction
○ Saga
○ Idempotent operations
○ Stream processing
○ Event sourcing

◎ Deploy a distributed application

◎ Infrastructure as code

◎ Update and maintain

◎ Observability

How to start?

11

https://visualstudio.microsoft.com/it/vs/community/

https://code.visualstudio.com/

https://marketplace.visualstudio.com/items?itemName=

ms-dotnettools.csdevkit

or

https://visualstudio.microsoft.com/it/vs/community/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit

How to start?

12

https://github.com/meriturva/Parallel-and-Distributed-Programming

https://github.com/meriturva/Parallel-and-Distributed-Programming

Message Passing

13

https://en.wikipedia.org/wiki/Message_passing

Message passing is a technique for invoking behavior

public class Producer
{

public void Start()
{

var consumer = new Consumer();
int i = 0 ;
while (true)
{

var result = consumer.Elaborate(i, i);
Console.WriteLine($"Counter: {i} with result: {result}");
i++;

}
}

}

Example project: 01 MessagePassing

https://en.wikipedia.org/wiki/Message_passing

Async programming

14
https://learn.microsoft.com/en-us/dotnet/csharp/asynchronous-programming/async-scenarios

On the C# side of things, the compiler transforms your

code into a state machine that keeps track of things like

yielding execution when an await is reached and

resuming execution when a background job has

finished.

public class Producer
{

public async Task StartAsync()
{

var consumer = new Consumer();
int i = 0 ;
while (true)
{

var result = await consumer.ElaborateAsync(i, i);
Console.WriteLine($"Counter: {i} with result: {result}");
i++;

}
}

}

Code run in the background while other code is executing.

Example project: 02 AsyncAwait

https://learn.microsoft.com/en-us/dotnet/csharp/asynchronous-programming/async-scenarios

Async programming (on single thread)

15

async function doWork()
{

console.log("frist");
await wait(1 0 0 0);
console.log("second");

}

doWork();

JavaScript is a single-thread!

https://www.youtube.com/watch?v=8aGhZQkoFbQ

https://www.youtube.com/watch?v=8aGhZQkoFbQ

Javascript – Callback and Promise

16https://latentflip.com/loupe/

https://latentflip.com/loupe/

In-process / sync

17

In-process / sync with mediator pattern

18

https://en.wikipedia.org/wiki/Mediator_pattern

Objects no longer communicate directly with each other, but instead

communicate through the mediator. This reduces the dependencies

between communicating objects, thereby reducing coupling.

https://en.wikipedia.org/wiki/Mediator_pattern
https://en.wikipedia.org/wiki/Coupling_(computer_programming)

In-process / sync with mediator pattern

19

Example project: 03 EventsInProcessByMediator

namespace Events.Controllers
{

[ApiController]
[Route("[controller]")]
public class OrderController : ControllerBase
{

private readonly IPublisher _publisher;

public OrderController(IPublisher publisher)
{

_publisher = publisher;
}

[HttpGet]
public async Task NewOrder()
{

var @event = new NewOrderEvent();
await _publisher.Publish(@event);

}
}

}

In-process / sync with mediator pattern

20

Performance

Scalability

Resilience

Redundancy

?

Out of process / async

21

Out of process / async with producer/consumer

22

Queue Producer

23
Example project: 04 EventsOutOfProcessByChannel

C# Channels are an implementation of the

producer/consumer programming model.

https://learn.microsoft.com/en-us/dotnet/core/extensions/channels

namespace EventsOutOfProcessByChannel.Controllers
{

[ApiController]
[Route("[controller]")]
public class OrderController : ControllerBase
{

private readonly ChannelWriter<NewOrderEvent> _channelWriter;

public OrderController(ChannelWriter<NewOrderEvent> channelWriter)
{

_channelWriter = channelWriter;
}

[HttpGet]
public async Task NewOrder()
{

// Produce a new event and sent to channel
var @event = new NewOrderEvent();
await _channelWriter.WriteAsync(@event);

}
}

}

https://learn.microsoft.com/en-us/dotnet/core/extensions/channels

Queue Consumer

24
Example project: 04 EventsOutOfProcessByChannel

C# Channels are an implementation of the

producer/consumer conceptual programming model.

https://learn.microsoft.com/en-us/dotnet/core/extensions/channels

namespace EventsOutOfProcessByChannel
{

public class Consumer
{

public static async ValueTask ConsumeWithWhileAsync(ChannelReader<NewOrderEvent> reader)
{

while (true)
{

var @event = await reader.ReadAsync();
// Simulate some work
Console.WriteLine($"Event elaborating {@event.Created}");
Thread.Sleep(5 0 0 0);
Console.WriteLine($"Event comsumed {@event.Created}");

}
}

}
}

https://learn.microsoft.com/en-us/dotnet/core/extensions/channels

In a monolithic application running on a single

process, components invoke one another

using language-level method or function calls.

A microservices-based application is a distributed

system running on multiple processes or services,

usually even across multiple servers or hosts

https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-

microservice-container-applications/communication-in-microservice-

architecture

https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/communication-in-microservice-architecture
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/communication-in-microservice-architecture
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/communication-in-microservice-architecture

Out of-process / sync with microservice

26

Example project: 05 MicroserviceA/B

namespace MicroserviceA.Controllers
{

[ApiController]
[Route("[controller]")]
public class OrderController : ControllerBase
{

private readonly HttpClient _client;

public OrderController(HttpClient client)
{

_client = client;
}

[HttpGet]
public async Task<long> NewOrder()
{

Console.WriteLine("Sending request to MicroserviceB");
var paymentResult = await _client.GetFromJsonAsync<long>("https://localhost:7 1 6 5 /payment");
Console.WriteLine($"Sent request MicroserviceB with result {paymentResult}");

…
}

}
}

Out of-process / sync with microservice

27

Example project: 05 MicroserviceA/B

namespace MicroserviceB.Controllers
{

[ApiController]
[Route("[controller]")]
public class PaymentController : ControllerBase
{

[HttpGet]
public long Get()
{

Console.WriteLine("Elaborating request");
var result = Random.Shared.Next(0 , 1 0 0);
Thread.Sleep(1 0 0 0);
Console.WriteLine($"Elaborated request with result: {result}");
return result;

}
}

}

Out of-process / sync with microservice

28

Performance

Scalability

Resilience

Redundancy

?

https://medium.com/@beuttam/building-scalable-microservices-with-proxy-load-balancer-api-

gateway-private-network-services-f25c73cc8e02

https://medium.com/@beuttam/building-scalable-microservices-with-proxy-load-balancer-api-gateway-private-network-services-f25c73cc8e02
https://medium.com/@beuttam/building-scalable-microservices-with-proxy-load-balancer-api-gateway-private-network-services-f25c73cc8e02

namespace EventsOutOfProcessByDB.Controllers
{

[ApiController]
[Route("[controller]")]
public class OrderController : ControllerBase
{

private readonly EventBusContext _eventBusContext;

public OrderController(EventBusContext eventBusContext)
{

_eventBusContext = eventBusContext;
}

[HttpGet]
public async Task NewOrder()
{

// Produce a new event and sent to channel
var @event = new NewOrderEvent();
@event.UserEmail = "diego@bonura.dev";

var content = JsonSerializer.Serialize(@event, @event.GetType());
var typeName = @event.GetType().FullName!;

var message = new Message()
{

Type = typeName,
Content = content

};

_eventBusContext.Add(message);
await _eventBusContext.SaveChangesAsync();

}
}

}

Out of-process / async with microservice - producer

29Example project: 06 EventsOutOfProcessByDatabaseConsumer

protected override async Task ExecuteAsync(CancellationToken stoppingToken)
{

while (true)
{

var messageToElaborate = _eventBusContext.Set<Message>().Where(m => m.ProcessedOn == null).OrderBy(m
=> m.OccurredOn).FirstOrDefault();

if (messageToElaborate != null)
{

var type = AppDomain.CurrentDomain.GetAssemblies().Where(a => !a.IsDynamic).SelectMany(a =>
a.GetTypes()).FirstOrDefault(t => t.FullName == messageToElaborate.Type);

var domainEvent = (INotification)JsonSerializer.Deserialize(messageToElaborate.Content, type);

await _publisher.Publish(domainEvent);

messageToElaborate.ProcessedOn = DateTime.Now;
await _eventBusContext.SaveChangesAsync();

}

await Task.Delay(1 0 0 0);
}

}

Out of-process / async with microservice - consumer

30Example project: 06 EventsOutOfProcessByDatabaseConsumer

Out of-process / async with microservice consumer

31

Performance

Scalability

Resilience

Redundancy

?

https://medium.com/@beuttam/building-scalable-microservices-with-proxy-load-balancer-api-

gateway-private-network-services-f25c73cc8e02

Is it easy to add new consumers to increase

performance?

we need to introduce a row lock (on db side) or optimistic

concurrency control (occ)

https://medium.com/@beuttam/building-scalable-microservices-with-proxy-load-balancer-api-gateway-private-network-services-f25c73cc8e02
https://medium.com/@beuttam/building-scalable-microservices-with-proxy-load-balancer-api-gateway-private-network-services-f25c73cc8e02

Message broker

an intermediary for messaging

Message broker

33

Message broker

34

Message brokers

• can validate, store, route, and deliver messages to the appropriate

destinations.

• act as intermediaries between other applications, allowing senders to

issue messages without knowing where the recipients are located,

whether or not they are active, or how many there are.

• simplifies the separation of processes and services within systems.

Protocols

• AMQP: The Advanced Message Queuing Protocol (RabbitMQ/ Azure

Service Bus / Amazon MQ / Apache ActiveMQ)

• Kafka: binary protocol over TCP

• MQTT: Lightweight and Efficient for IoT Messages (Mosquitto)

RabbitMQ

35

RabbitMQ

36

RabbitMQ - Producer

37

public class EventBusRabbitMQ : IEventBus
{

public void Publish(IEvent @event)
{

var factory = new ConnectionFactory { HostName = "localhost" };
using var connection = factory.CreateConnection();
using var channel = connection.CreateModel();

channel.QueueDeclare(queue: "task_queue",
durable: true,
exclusive: false,
autoDelete: false,
arguments: null);

string message = JsonSerializer.Serialize(@event, typeof(NewOrderEvent));
var body = Encoding.UTF8.GetBytes(message);

var properties = channel.CreateBasicProperties();
properties.Persistent = true;

channel.BasicPublish(exchange: string.Empty,
routingKey: "task_queue",
basicProperties: properties,
body: body);

}
}

RabbitMQ - Consumer

38

var factory = new ConnectionFactory { HostName = "localhost" };
using var connection = factory.CreateConnection();
using var channel = connection.CreateModel();

channel.QueueDeclare(queue: "task_queue",
durable: true,
exclusive: false,
autoDelete: false,
arguments: null);

channel.BasicQos(prefetchSize: 0 , prefetchCount: 1 , global: false);
var messageConsumer = new EventingBasicConsumer(channel);

messageConsumer.Received += async (model, ea) =>
{

byte[] body = ea.Body.ToArray();
var @event = (NewOrderEvent)JsonSerializer.Deserialize(body, typeof(NewOrderEvent));
Console.WriteLine($"Received from {@event.UserEmail}");

await Task.Delay(1 0 0);

channel.BasicAck(deliveryTag: ea.DeliveryTag, multiple: false);
};

channel.BasicConsume(queue: "task_queue",
autoAck: false,
consumer: messageConsumer);

Console.ReadLine();

Distribute application with message broker

39

Performance

Scalability

Resilience

Redundancy

?

Is it easy to add new consumers to increase

performance?

Serialization performance

40
https://github.com/neuecc/Utf8Json

https://github.com/neuecc/Utf8Json

Serialization performance

41

Json

Protobuf

Communication types

42

Distributed
application with a

framework

Masstransit

44

Masstransit - Producer

45

public class OrderController : ControllerBase
{

private readonly IBus _bus;

public OrderController(IBus bus)
{

_bus = bus;
}

[HttpGet]
public async Task NewOrderAsync()
{

// Produce a new event and sent to channel
var @event = new NewOrderEvent();
@event.UserEmail = "diego@bonura.dev";

await _bus.Publish(@event);
}

}

Masstransit - Consumer

46

namespace DistributedAppWithMassTransitConsumer
{

public class MessageConsumer : IConsumer<NewOrderEvent>
{

readonly ILogger<MessageConsumer> _logger;

public MessageConsumer(ILogger<MessageConsumer> logger)
{

_logger = logger;
}

public Task Consume(ConsumeContext<NewOrderEvent> context)
{

_logger.LogInformation("Received ordine from: {email}", context.Message.UserEmail);

return Task.CompletedTask;
}

}
}

Applications go
wrong

Applications go wrong

48Page 246 of Design Data-Intensive Applications

Logging on distributed application

49

Producer Consumer1 Consumer2

Log files Log files Log files

How to get information when things go wrong?

Call logs in one place

50

Call logs in one place

51

Observability

On distributed application logs monitoring
could be difficult

Main concepts of observability

53

Logs in the technology and
development field give a
written record of happenings
within a system, similar to the
captain's log on a ship. Metrics are a set of values that are

tracked over time.

A trace is a means to track a user request
from the user interface all the way through
the system and back to the user when they
receive confirmation that their request has
been completed. As part of the trace, every
operation executed in response to the
request is recorded.

Observability standard

54

OpenTelemetry is an open-source CNCF (Cloud Native
Computing Foundation) project formed from the merger of
the OpenCensus and OpenTracing projects. It provides a
collection of tools, APIs, and SDKs for capturing metrics,
distributed traces and logs from applications.

OpenTelemetry on distributed application

55

Producer Consumer1 Consumer2

OpenTelemetry

Collector

Example

56

Metric:

Trace:

Distributed lock

Distributed locks are a very useful primitive in
many environments where different

processes must operate with shared resources
in a mutually exclusive way.

https://redis.io/

Created by: Salvatore Sanfilippo

https://microsoft.github.io/garnet/

Place an

order

Update user

statistics
Update user

history

Lock user_id

Redis lock

61

static async Task Main(string[] args)
{

var endPoints = new List<RedLockEndPoint> { new DnsEndPoint("localhost", 6 3 7 9) };
var redlockFactory = RedLockFactory.Create(endPoints);

var resource = "my-order-id";
var expiry = TimeSpan.FromSeconds(3 0);

await using (var redLock = await redlockFactory.CreateLockAsync(resource, expiry))
{

// make sure we got the lock
if (redLock.IsAcquired)
{

// do stuff
}

}
}

Saga

When you have to orchestrate events!

Saga: consistency models

63

Immediate consistency: once a write operation (e.g., updating a piece of data) is

completed, any subsequent read operation (e.g., retrieving that data) will reflect the

updated value.

• expensive in terms of performance

• not ideal in all distributed systems

ACID (atomicity, consistency, isolation, durability).

Eventual consistency: may be a period of time during which different nodes or

replicas in the system have different versions of the data.

• commonly used in systems like NoSQL databases

BASE (basically-available, soft-state, eventual consistency)

Saga: trade off

64

https://priyalwalpita.medium.com/steering-clear-of-distributed-monolith-traps-in-your-journey-to-

effective-microservices-86671be0b604

https://www.youtube.com/watch?v=p2GlRToY5HI

https://priyalwalpita.medium.com/steering-clear-of-distributed-monolith-traps-in-your-journey-to-effective-microservices-86671be0b604
https://priyalwalpita.medium.com/steering-clear-of-distributed-monolith-traps-in-your-journey-to-effective-microservices-86671be0b604
https://www.youtube.com/watch?v=p2GlRToY5HI

Saga approaches: choreography and orchestration

65

Choreography: without a centralized point of control

https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/saga/saga

https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/saga/saga

Saga approaches: choreography and orchestration

66

Orchestration: centralized controller tells participants what to execute

https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/saga/saga

https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/saga/saga

Saga choreography

67

public OrderStateMachine()
{

InstanceState(x => x.CurrentState);

Event(() => NewOrderEvent, x => x.CorrelateById(context => context.Message.OrderId));
Event(() => OrderProcessed, x => x.CorrelateById(context => context.Message.OrderId));
Event(() => OrderCancelled, x => x.CorrelateById(context => context.Message.OrderId));

Initially(
When(NewOrderEvent)

.Then(context =>
{

context.Saga.ProcessingId = Guid.NewGuid();
})
.Publish(context => new ProcessOrder(context.Saga.CorrelationId))
.TransitionTo(Pending)
.Then(context => Console.Out.WriteLineAsync($"From New to Pending: {context.Saga.CorrelationId}"))

);

During(Pending,
When(OrderProcessed)

.TransitionTo(Accepted)

.Then(context => Console.Out.WriteLineAsync($"From Pending to Accepted: {context.Saga.CorrelationId}"))

.Finalize(),
When(OrderCancelled)

.TransitionTo(Cancelled)

.Then(context => Console.Out.WriteLineAsync($"From Pending to Faulted: {context.Saga.CorrelationId} for reason:
{context.Message.Reason}"))

.Finalize()
);

SetCompletedWhenFinalized();
}

Saga choreography

68

MassTransit elaborates saga and creates few queue and exchanges on RabbitMq

Actor model

Instead of calling methods, actors send
messages to each other!

https://doc.akka.io/docs/akka/current/typed/guide/actors-intro.html

https://learn.microsoft.com/en-us/dotnet/orleans/overview

Actor model

70

The actor model is a programming model in which each actor is a lightweight,

concurrent, immutable object that encapsulates a piece of state and corresponding

behavior. Actors communicate exclusively with each other using asynchronous

messages.

The Actor Model: A Paradigm for Concurrent and

Distributed Computing

Actor model

71

When we have a Producer and Consumer we

usually send message to a queue

On actor model, we can implement Producer and

Consumer as actor.

In Producer, we just get the actor reference of

Consumer actor to send messages to Consumer’s

mailbox.

Actor model

72

Actor model: History 1973

73

https://en.wikipedia.org/wiki/Actor_model

Carl Hewitt

The actor model was inspired by physics

The Actor Model is a mathematical theory of computation that treats

“Actors” as the universal conceptual primitives of concurrent digital

computation.

Actors is based on “behavior” as opposed to the “class”

concept of object-oriented programming.

Actor model

74

1. Isolation: Actors are independent, with their own state and

behavior.

2. Single thread: Actors process requests one at time

3. Messaging: Actors interact by exchanging asynchronous

messages.

4. Location Transparency: Actors' locations are abstracted,

enabling distribution.

Main principles:

Actor model: life cycle

75

Actor model: implementations

76

Java / c# c#

https://akka.io/

https://getakka.net/
https://learn.microsoft.com/en-us/dotnet/orleans/overview

Actor model implementations on Orleans
Microsoft research (2010)

77

https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/

Orleans invented the Virtual Actor abstraction

Actors are purely logical entities that always exist, virtually. An actor cannot

be explicitly created nor destroyed, and its virtual existence is unaffected by

the failure of a server that executes it. Since actors always exist, they are

always addressable.

https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/

Actor model implementations on Orleans - Grain

78

1. Grain: grains are implementation of a virtual actor.

2. Interfaces: grains define interfaces.

3. Grain: has always an identity (string, number, guid)

4. Persistence: grains could volatile or persisted

5. Lifecycle: grains could be terminated to free computer

resources

https://learn.microsoft.com/en-us/dotnet/orleans/overview#what-are-grains

https://learn.microsoft.com/en-us/dotnet/orleans/overview#what-are-grains

Actor model implementations on Orleans - Silo

79

A silo hosts one or more grains

You can have any number of clusters, each cluster has one or more silos, and

each silo has one or more grains

https://learn.microsoft.com/en-us/dotnet/orleans/overview#what-are-silo

s

https://learn.microsoft.com/en-us/dotnet/orleans/overview#what-are-silo

Actor model implementations on Orleans - Silo

80

1. Host grains

2. Responsible to activate and deactivate grains

3. Typically: 1 silo per container/node

4. Could be embedded into main application or in separate

container/node

5. Clustering silos is easy

Actor model implementations on Orleans - Dashboard

81

http://localhost:8080

https://github.com/OrleansContrib/OrleansDashboard

http://localhost:8080/

Actor model implementations on Orleans – Calling actors

82

_grainFactory.GetGrain<IGrainA>("my-id");

You can start an actor using grainFactory:

Inside an actor:

var grainB = this.GrainFactory.GetGrain<IGrainB>(id);

Orleans: Actor mailbox addresses are full typed

Actor model implementations on Orleans – Deadlock

83

Single thread: Actors process requests one at time

https://learn.microsoft.com/it-it/dotnet/orleans/grains/request-scheduling

Es 14: MicrosoftOrleansDeadlock

https://learn.microsoft.com/it-it/dotnet/orleans/grains/request-scheduling

Actor model implementations on Orleans – Persistence

84

public HelloGrain(
[PersistentState("hello")] IPersistentState<HelloState> helloState,
ILogger<HelloGrain> logger)

{
_logger = logger;
_helloState = helloState;

}

public override Task OnActivateAsync(CancellationToken cancellationToken)
{

return base.OnActivateAsync(cancellationToken);
}

public async Task<string> SayHello(string greeting)
{

_helloState.State.Counter++;
_logger.LogInformation("Start say Hello for {grainId} with counter {counter}",

IdentityString, _helloState.State.Counter);
await Task.Delay(1 0 0 0);

// Store state
await _helloState.WriteStateAsync();

//DeactivateOnIdle();
return $"Hello, {greeting}!";

}

public override Task OnDeactivateAsync(DeactivationReason reason, CancellationToken
cancellationToken)
{

return base.OnDeactivateAsync(reason, cancellationToken);
}

Es 15: MicrosoftOrleansPersistence

Actor model implementations on Orleans – Streaming

85
Es 16: MicrosoftOrleansStreams

https://learn.microsoft.com/en-us/dotnet/orleans/streaming/streams-why

A typical scenario for Orleans Streams is when you

have per-user streams and you want to perform

different processing for each user, within the context of

an individual user.

_stream = this.GetStreamProvider("StreamProvider").GetStream<int>(streamId);

// ImplicitStreamSubscription attribute here is to subscribe implicitely to all stream within
// a given namespace: whenever some data is pushed to the streams of namespace
Constants.StreamNamespace,
// a grain of type ConsumerGrain with the same guid of the stream will receive the message.
// Even if no activations of the grain currently exist, the runtime will automatically
// create a new one and send the message to it.
[ImplicitStreamSubscription("StreamNamespace")]
public class ConsumerGrain : Grain, IConsumerGrain, IStreamSubscriptionObserver

Producer

Consumer

Actor model implementations on Orleans – Transactions

86
Es 17: MicrosoftOrleansTransactions

https://learn.microsoft.com/en-us/dotnet/orleans/grains/transactions

Orleans supports distributed ACID transactions against persistent grain state.

await _transactionClient.RunTransaction(
TransactionOption.Create,
async () =>
{

await fromAccount.Withdraw(transferAmount);
await toAccount.Deposit(transferAmount);

});

public interface IAccountGrain : IGrainWithStringKey
{

[Transaction(TransactionOption.Join)]
Task Withdraw(int amount);

[Transaction(TransactionOption.Join)]
Task Deposit(int amount);

[Transaction(TransactionOption.CreateOrJoin)]
Task<int> GetBalance();

}

https://learn.microsoft.com/en-us/dotnet/orleans/grains/transactions

Actor model: why?

87

1. Problem with multi thread access

User App

1. Few users call an API

2. Shared services running on same APP

3. Few threads could access same service

https://getakka.net/articles/intro/what-are-actors.html#the-illusion-of-encapsulation

https://getakka.net/articles/intro/what-are-actors.html#the-illusion-of-encapsulation

Actor model: why?

88

1. Problem with multi thread access – classical solution

Lock is not performant

Actor model: why?

89

1. Problem with multi thread access – actor model solution

1. One actor per user

2. No need to synchronize methods

3. Actors process requests one at time

4. Actors are small

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/Orleans-MSR-

TR-2014-41.pdf

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/Orleans-MSR-TR-2014-41.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/Orleans-MSR-TR-2014-41.pdf

Actor model: why?

90

1. Problem with state-less services

https://www.youtube.com/watch?v=iE8cisVgoj8

User App DB

1. User calls an API

2. App loads state from DB

3. App holds state in memory for better performance

S

https://www.youtube.com/watch?v=iE8cisVgoj8

Actor model: why?

91

1. Problem with state-less services

User

App3 Clustered

DB

1. User calls an API on App1

2. App1 loads state from DB

3. App1 holds state in memory for better performance

4. User calls an API on App3

S

App2 Clustered

App1 Clustered

S

Actor model: why?

92

1. Problem with state-less services – classical solution

User

App3 Clustered

DB

App2 Clustered

App1 Clustered

Cache1 Clustered Cache2 Clustered

External service

Actor model: why?

93

1. Problem with state-less services – actor model solution

User

App3 Clustered

DB

1

App2 Clustered

App1 Clustered

Silo 1

Silo 2

2

3

Orleans

External service

Actor model: when?

94

1. Actor are small enough to be single-thread

2. Many entities loosely coupled (billions!)

3. No need of a global coordinator, only between actors

4. You know your project

1. Entity must access to the state of other entities

2. Entities relations are complex (ERP, MES…)

3. Small entities but fat

4. You don’t know your project

Actor model: examples

95

Number of Internet of Things (IoT) connected
devices worldwide from 2019 to 2030

https://www.statista.com/statistics/1194682/iot-connected-devices-vertically/

https://www.statista.com/statistics/1194682/iot-connected-devices-vertically/

Actor model: examples

96

https://learn.microsoft.com/en-us/dotnet/orleans/tutorials-and-samples/

https://learn.microsoft.com/en-us/dotnet/orleans/tutorials-and-samples/

Security in
Distributed

Applications

Man in the middle

98

Different services with
different protocols:

1. Web http/https
2. gRPC
3. AMQP
4. Database

Man in the middle

99

TLS: the server has a TLS certificate and a public/private
key pair, while the client does not

But we have server to server communications!

Man in the middle

100

mTLS: mutual TLS (internal CA)
*Zero Trust means that no user, device, or network traffic is
trusted by default, an approach that helps eliminate many
security vulnerabilities.

https://www.elastic.co/guide/en/kibana/current/elasticsearch-mutual-tls.html

https://www.rabbitmq.com/ssl.html#peer-verification

https://learn.microsoft.com/en-us/samples/dotnet/samples/orleans-transport-layer-

security-tls/

Distributed Denial of Service

101

Million of requests per seconds
from different clients

Distributed Denial of Service

102

Cloud providers have few services.

https://azure.microsoft.com/it-it/products/ddos-protection/

https://aws.amazon.com/it/shield/

https://blog.cloudflare.com/ddos-threat-report-2023-q1/

Distributed Denial of Service

103

Rate limit on http:

429 Too Many Requests The 429 status code indicates that the user has sent too many requests in a given amount of time ("rate limiting").

https://learn.microsoft.com/en-us/aspnet/core/performance/rate-limit?view=aspnetcore-8.0

Es 18: MicrosoftRateLimit

Handling secrets

104

Services could need to connect:

1. Databases

2. Caches

3. External services on cloud

4. Other clusters

5. Other services

How to handle secrets correctly?

Handling secrets

105

Using certificates to prove application identity!

1. No need to share password

2. Security is on network layer (mTLS)

Handling secrets

106

Using secrets to prove application identity!

1. Services must send secret to other service

2. Security is on application layer

Handling secrets

107

What happens is a certificate or secrets is stolen?

Problems:

1. If a certificate/secrets is compromised on one

single service, I must invalidate it

2. Change certificate/secrets could be done on

runtime but on cluster is complex

3. Certificates/Secrets must have an expire time

Handling secrets

108

Service to handle secrets

https://www.vaultproject.io/

Handling secrets

109

How to use it?

Es 19: SecretsWithVault

static async Task Main(string[] args)
{

// Initialize one of the several auth methods.
IAuthMethodInfo authMethod = new TokenAuthMethodInfo("testtoken");

// Initialize settings. You can also set proxies, custom delegates etc. here.
var vaultClientSettings = new VaultClientSettings("http://localhost:82 0 0 ", authMethod);

IVaultClient vaultClient = new VaultClient(vaultClientSettings);

var myKeys = await vaultClient.V1 .Secrets.Cubbyhole.ReadSecretAsync("my-path");
}

Handling secrets

110

How to use it?

User
Authorization

User authentication/authorization

112

Don't spread security

concepts around your

services

How can we manage Authorization in distributed

application?

Contexts

113

How can we manage Authorization in distributed

application?

https://learn.microsoft.com/en-us/dotnet/orleans/grains/request-context

https://learn.microsoft.com/en-us/aspnet/core/fundamentals/http-context

Context: a way to pass data between methods and grains

RequestContext.Set("UserRole", "Admin");

RequestContext.Get("UserRole");

Set context

Get context
Statics methods but we are in a

multi thread environment!

Es 20: MicrosoftOrleansRequestContext

https://learn.microsoft.com/en-us/dotnet/orleans/grains/request-context
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/http-context

Contexts

114

AsyncLocal

https://learn.microsoft.com/en-us/dotnet/api/system.threading.asynclocal-1?view=net-8.0

Represents ambient data that is local to a given

asynchronous control flow, such as an asynchronous

method.

AsyncLocal<T> is used to persist a value across an

asynchronous flow.

https://learn.microsoft.com/en-us/dotnet/api/system.threading.asynclocal-1?view=net-8.0

.NET Aspire

.NET Aspire

116

.NET Aspire is an opinionated stack for building

resilient, observable, and configurable cloud-native

applications with .NET

var builder = DistributedApplication.CreateBuilder(args);

var apiservice = builder.AddProject<Projects.aspire_ApiService>("apiservice");

builder.AddProject<Projects.aspire_Web>("webfrontend")
.WithReference(apiservice);

builder.Build().Run();

.NET Aspire: dashboard

117

Es 21: Aspire

.NET Aspire: deploy

118

https://learn.microsoft.com/en-us/dotnet/aspire/deployment/overview

dotnet run --project .\aspire.AppHost\aspire.AppHost.csproj --publisher
manifest --output-path aspire-manifest.json

https://learn.microsoft.com/en-us/dotnet/aspire/deployment/overview

.NET Aspire: infrastructure as code

119

https://www.youtube.com/watch?v=DORZA_S7f9w
https://www.youtube.com/watch?v=HYe6y1kBuGI

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddRedisContainer("cache");

var apiservice =
builder.AddProject<Projects.aspireWithRedis_ApiService>("apiservice");

builder.AddProject<Projects.aspireWithRedis_Web>("webfrontend")
.WithReference(apiservice)
.WithReference(cache);

builder.Build().Run();

Es 22: Aspire with Redis

https://www.youtube.com/watch?v=DORZA_S7f9w
https://www.youtube.com/watch?v=HYe6y1kBuGI

Testing

Unit test

121
Es 23: ProjectToTest

namespace ProjectToTest.Tests
{

public class HelloGrainTests
{

[Fact]
public async Task TestSayHello()
{

// ARRANGE
var helloGrain = new HelloGrain();

// ACT
var result = await helloGrain.SayHello("Diego");

// ASSERT
Assert.Equal("Hello, Diego!", result);

}
}

}

public sealed class HelloGrain : Grain, IHelloGrain
{

public HelloGrain()
{
}

public async Task<string> SayHello(string greeting)
{

await Task.Delay(1 0 0);
return $"Hello, {greeting}!";

}
}

Unit test: mock a service

122
Es 23: ProjectToTest

public sealed class HelloGrainUsingAService : Grain, IHelloGrainUsingAService
{

private readonly IAService _service;

public HelloGrainUsingAService(IAService service)
{

_service = service;
}

public async Task<int> Count()
{

return await _service.GetCoundFromDataBase();
}

}

Unit test: mock a service

123

public class HelloGrainUsingAServiceTests
{

[Fact]
public async Task TestCount()
{

// ARRANGE
var service = Substitute.For<IAService>();
service.GetCoundFromDataBase().Returns(5);

var helloGrain = new HelloGrainUsingAService(service);

// ACT
var result = await helloGrain.Count();

// ASSERT
Assert.Equal(5 , result);

}
}

Unit test: Orleans

124

https://learn.microsoft.com/en-us/dotnet/orleans/tutorials-and-samples/testing

The Microsoft.Orleans.TestingHost NuGet package contains TestCluster which can be

used to create an in-memory cluster, comprised of two silos by default, which can be used to

test grains.

public class HelloGrainTestsTestCluster
{

[Fact]
public async Task TestSayHello()
{

// ARRANGE
var builder = new TestClusterBuilder();
var cluster = builder.Build();
cluster.Deploy();

// ACT
var hello = cluster.GrainFactory.GetGrain<IHelloGrain>("my-id");
var result = await hello.SayHello("Diego");
cluster.StopAllSilos();

// ASSERT
Assert.Equal("Hello, Diego!", result);

}
}

https://learn.microsoft.com/en-us/dotnet/orleans/tutorials-and-samples/testing

Event Sourcing

Crud

126

https://learn.microsoft.com/en-us/azure/architecture/patterns/event-sourcing

Applications store their current state in a database:

1) Previous state is lost
2) No way to restore states
3) Store operation could be slow
4) Data update conflicts
5) History is lost

https://learn.microsoft.com/en-us/azure/architecture/patterns/event-sourcing

Event Sourcing

127

Similar to the way a bank manages an account

Events are immutable and can be stored using an append-only operation.

Event Sourcing does not persist the current state of a record, but instead stores the individual

changes as a series of deltas that led to the current state over time.

Event Sourcing: storing data as events

128

Event sourcing is a Microservice design pattern that involves capturing all changes to

an application’s state as a sequence of events, rather than simply updating the state

itself. Each event represents a discrete change to the system and is stored in an

event log, which can be used to reconstruct the system’s state at any point in time.

1) The complete history of changes is available for auditing purposes.
2) The ability to query the state of the system at any point in time.
3) Easy integration with distributed systems.
4) Event-driven systems can scale horizontally by adding more event

consumers.
5) Easier to trace and diagnose issues by examining the event log.

Event Sourcing: problems

129

Complexity
Event sourcing can introduce complexity, especially in

understanding the flow of events and reconstructing the

current state from a series of events.

Performance
the process of replaying events to rebuild state or

responding to queries might impact performance,

especially as the volume of events grows

Storage
Storing every change as an event can lead to increased

storage requirements compared to traditional CRUD-

based approaches.

Event Sourcing: read models

130

Add item to

the cart
Event

storage

Cart read

model

Statistical read

model

User

Production Marketing

https://www.davidguida.net/event-sourcing-in-net-core-part-1-a-gentle-introduction/

Es 24: EventSourcing

https://www.davidguida.net/event-sourcing-in-net-core-part-1-a-gentle-introduction/

	Diapositiva 1: Parallel and Distributed Programming
	Diapositiva 2: Hello!
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7: Why?
	Diapositiva 8: How?
	Diapositiva 9: Example of complex system?
	Diapositiva 10: Main agenda
	Diapositiva 11: How to start?
	Diapositiva 12: How to start?
	Diapositiva 13: Message Passing
	Diapositiva 14: Async programming
	Diapositiva 15: Async programming (on single thread)
	Diapositiva 16: Javascript – Callback and Promise
	Diapositiva 17: In-process / sync
	Diapositiva 18: In-process / sync with mediator pattern
	Diapositiva 19: In-process / sync with mediator pattern
	Diapositiva 20: In-process / sync with mediator pattern
	Diapositiva 21: Out of process / async
	Diapositiva 22: Out of process / async with producer/consumer
	Diapositiva 23: Queue Producer
	Diapositiva 24: Queue Consumer
	Diapositiva 25
	Diapositiva 26: Out of-process / sync with microservice
	Diapositiva 27: Out of-process / sync with microservice
	Diapositiva 28: Out of-process / sync with microservice
	Diapositiva 29: Out of-process / async with microservice - producer
	Diapositiva 30: Out of-process / async with microservice - consumer
	Diapositiva 31: Out of-process / async with microservice consumer
	Diapositiva 32: Message broker
	Diapositiva 33: Message broker
	Diapositiva 34: Message broker
	Diapositiva 35: RabbitMQ
	Diapositiva 36: RabbitMQ
	Diapositiva 37: RabbitMQ - Producer
	Diapositiva 38: RabbitMQ - Consumer
	Diapositiva 39: Distribute application with message broker
	Diapositiva 40: Serialization performance
	Diapositiva 41: Serialization performance
	Diapositiva 42: Communication types
	Diapositiva 43: Distributed application with a framework
	Diapositiva 44: Masstransit
	Diapositiva 45: Masstransit - Producer
	Diapositiva 46: Masstransit - Consumer
	Diapositiva 47: Applications go wrong
	Diapositiva 48: Applications go wrong
	Diapositiva 49: Logging on distributed application
	Diapositiva 50: Call logs in one place
	Diapositiva 51: Call logs in one place
	Diapositiva 52: Observability
	Diapositiva 53: Main concepts of observability
	Diapositiva 54: Observability standard
	Diapositiva 55: OpenTelemetry on distributed application
	Diapositiva 56: Example
	Diapositiva 57: Distributed lock
	Diapositiva 58
	Diapositiva 59
	Diapositiva 60
	Diapositiva 61: Redis lock
	Diapositiva 62: Saga
	Diapositiva 63: Saga: consistency models
	Diapositiva 64: Saga: trade off
	Diapositiva 65: Saga approaches: choreography and orchestration
	Diapositiva 66: Saga approaches: choreography and orchestration
	Diapositiva 67: Saga choreography
	Diapositiva 68: Saga choreography
	Diapositiva 69: Actor model
	Diapositiva 70: Actor model
	Diapositiva 71: Actor model
	Diapositiva 72: Actor model
	Diapositiva 73: Actor model: History 1973
	Diapositiva 74: Actor model
	Diapositiva 75: Actor model: life cycle
	Diapositiva 76: Actor model: implementations
	Diapositiva 77: Actor model implementations on Orleans Microsoft research (2010)
	Diapositiva 78: Actor model implementations on Orleans - Grain
	Diapositiva 79: Actor model implementations on Orleans - Silo
	Diapositiva 80: Actor model implementations on Orleans - Silo
	Diapositiva 81: Actor model implementations on Orleans - Dashboard
	Diapositiva 82: Actor model implementations on Orleans – Calling actors
	Diapositiva 83: Actor model implementations on Orleans – Deadlock
	Diapositiva 84: Actor model implementations on Orleans – Persistence
	Diapositiva 85: Actor model implementations on Orleans – Streaming
	Diapositiva 86: Actor model implementations on Orleans – Transactions
	Diapositiva 87: Actor model: why?
	Diapositiva 88: Actor model: why?
	Diapositiva 89: Actor model: why?
	Diapositiva 90: Actor model: why?
	Diapositiva 91: Actor model: why?
	Diapositiva 92: Actor model: why?
	Diapositiva 93: Actor model: why?
	Diapositiva 94: Actor model: when?
	Diapositiva 95: Actor model: examples
	Diapositiva 96: Actor model: examples
	Diapositiva 97: Security in Distributed Applications
	Diapositiva 98: Man in the middle
	Diapositiva 99: Man in the middle
	Diapositiva 100: Man in the middle
	Diapositiva 101: Distributed Denial of Service
	Diapositiva 102: Distributed Denial of Service
	Diapositiva 103: Distributed Denial of Service
	Diapositiva 104: Handling secrets
	Diapositiva 105: Handling secrets
	Diapositiva 106: Handling secrets
	Diapositiva 107: Handling secrets
	Diapositiva 108: Handling secrets
	Diapositiva 109: Handling secrets
	Diapositiva 110: Handling secrets
	Diapositiva 111: User Authorization
	Diapositiva 112: User authentication/authorization
	Diapositiva 113: Contexts
	Diapositiva 114: Contexts
	Diapositiva 115: .NET Aspire
	Diapositiva 116: .NET Aspire
	Diapositiva 117: .NET Aspire: dashboard
	Diapositiva 118: .NET Aspire: deploy
	Diapositiva 119: .NET Aspire: infrastructure as code
	Diapositiva 120: Testing
	Diapositiva 121: Unit test
	Diapositiva 122: Unit test: mock a service
	Diapositiva 123: Unit test: mock a service
	Diapositiva 124: Unit test: Orleans
	Diapositiva 125: Event Sourcing
	Diapositiva 126: Crud
	Diapositiva 127: Event Sourcing
	Diapositiva 128: Event Sourcing: storing data as events
	Diapositiva 129: Event Sourcing: problems
	Diapositiva 130: Event Sourcing: read models

