O

Parallel and
Distributed
Programming

Hello!

| am Diego Bonura

Mi occupo di:
Frontend
Backend
Mobile
loT
R&D

diego@bonura.dev

https://medium.com/@diegobonura

Tomorrow’s

COOC i

architects | today.

GRUPPO EDITORIALE

RAFFAELLO
TUVY

AUSTRIA

LOCCIONI

ITALIA

mailto:diego@bonura.dev
https://medium.com/@diegobonura

OREILLY"

Designing
Data-Intensive
Applications

THE BIG IDEAS BEHIND RELIABLE, SCALABLE
AND MAINTAINABLE SYSTEMS

Martin Kleppmann

14

DESIGNING _'

/((Data- Intenswe
c-%, Applications §

The big ideas behind reliable,

Tolerating
4| hardware &
gl software faults [f

Operability.
simplicity &
evolvability

Latency
percentiles,

14

Distribuited programming is complex

4]

Use only on complex applications

Distributed Computing

=1 -

Processor
Memaory

Parallel Computing

Processo

P

Memaory

——

B

! l

!

l Memory

Node 1 Node 2 Node 3 Node 1 Node 2 Node 3

J__._J]EQJ—L Ll LI

Network

Why?

Performance
Maintains System Performance During High Demand Periods
Adapts to the Increase/Decrease Workloads and User Demands

Scalability
Boosts Performance and Utilization through Collaboration

Resilience
Ensures System Continuity in the Face of Failures

Redundancy
Enhances User Experience with Geographically Distributed
Systems

https://youtu.be/CZ3wluvmHeM?si=eHIQEqZkHpZWhHDm&t=604

https://youtu.be/CZ3wIuvmHeM?si=eHlQEqZkHpZWhHDm&t=604

How?

Main types:

Cluster Computing
https://www.mongodb.com/basics/clusters
https://www.elastic.co/guide/en/elasticsearch/refere
nce/current/high-availability.html

Grid computing
https://en.wikipedia.org/wiki/Great Internet Mersen
ne Prime Search
https://en.wikipedia.org/wiki/SETI@home

Cloud computing
https://www.linkedin.com/pulse/how-cloud-
computing-made-netflix-possible-keimo-edwards/
https://cloudacademy.com/blog/aws-reinvent-

netflix/

Peer-2-Peer
Torrent
Bitcoin

https://www.mongodb.com/basics/clusters
https://www.elastic.co/guide/en/elasticsearch/reference/current/high-availability.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/high-availability.html
https://en.wikipedia.org/wiki/Great_Internet_Mersenne_Prime_Search
https://en.wikipedia.org/wiki/Great_Internet_Mersenne_Prime_Search
https://en.wikipedia.org/wiki/SETI@home
https://www.linkedin.com/pulse/how-cloud-computing-made-netflix-possible-keimo-edwards/
https://www.linkedin.com/pulse/how-cloud-computing-made-netflix-possible-keimo-edwards/
https://cloudacademy.com/blog/aws-reinvent-netflix/
https://cloudacademy.com/blog/aws-reinvent-netflix/

Example of complex system?

Two of Twitter’s main operations are:

Post tweet

* Auser can publish a new message to their followers (4.6k requests/sec on average, over 12k
requests/sec at peak).

Home timeline

* Auser can view tweets posted by the people they follow (300k requests/sec)....

Continue to book «Designing Data-Intensive Applications» page 11

Main agenda

Object oriented programming (message passing)
Async programming
In-process [out-of-process programming

Distributed programming
Message brokers
Actor Model
Serialization
Transaction
Saga
Idempotent operations
Stream processing
Event sourcing

Deploy a distributed application
Infrastructure as code

Update and maintain
Observability

10

How to start?

https://visualstudio.microsoft.com/it/vs/community/

or

https://code.visualstudio.com/

https://marketplace.visualstudio.com/items?itemName=

ms-dotnettools.csdevkit

11

https://visualstudio.microsoft.com/it/vs/community/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit

How to start?

https://github.com/meriturva/Parallel-and-Distributed-Programming

12

https://github.com/meriturva/Parallel-and-Distributed-Programming

Message Passing

1880

LB

1880

Smaltalk: A message is simply a method call on an object.

Smalltalk messages are perfectly synchronous (the caller
waits for the callee to return a value), and not terribly
different then function/method calls in other languages.

https://www.researchgate.net/publication/260447599 A

n Evaluation Framework and Comparative Analysis

of the Widely Used First Programming Langquages

13

https://www.researchgate.net/publication/260447599_An_Evaluation_Framework_and_Comparative_Analysis_of_the_Widely_Used_First_Programming_Languages
https://www.researchgate.net/publication/260447599_An_Evaluation_Framework_and_Comparative_Analysis_of_the_Widely_Used_First_Programming_Languages
https://www.researchgate.net/publication/260447599_An_Evaluation_Framework_and_Comparative_Analysis_of_the_Widely_Used_First_Programming_Languages

Message Passing

Message passing is a technique for invoking behavior

public class Producer
{
public void Start()
{
var consumer = new Consumer();
int 1 = 0;
while (true)
{
var result = consumer.Elaborate(i, i);
Console.WriteLine($"Counter: {i} with result: {result}");
i++;
}
}
}

Example project: 01 MessagePassing

https://en.wikipedia.org/wiki/Message passing

14

https://en.wikipedia.org/wiki/Message_passing

Async programming

\ Code run in the background while other code is executing.

public cldss Producer
{
public async Task StartAsync()
{
var consumer = new Consumer();
int 1 = 0;
while (true)
{
var result = await consumer.ElaborateAsync(i, i);
Console.WriteLine($"Counter: {i} with result: {result}");
i++;
}
}
}

Example project: 02 AsyncAwait

On the C# side of things, the compiler transforms your
code into a state machine that keeps track of things like
yielding execution when an await is reached and
resuming execution when a background job has
finished.

https://devblogs.microsoft.com/dotnet/how-async-await-really-works/#async/await-under-the-covers

15
https://learn.microsoft.com/en-us/dotnet/csharp/asynchronous-programming/async-scenarios

https://learn.microsoft.com/en-us/dotnet/csharp/asynchronous-programming/async-scenarios
https://devblogs.microsoft.com/dotnet/how-async-await-really-works/#async/await-under-the-covers

Async programming (on single thread)

JavaScript is a single-threaded language!

async function doWork()

{

console.log("frist");
await wait(1000);
onsole.log("second");

doWork();

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async function

Event Loop :

Stack

Bar

Foo

Event Loop ©

Callback Queue

WebAPIs

onClick

onLoad

https://www.youtube.com/watch?v=8aGhZQkoFbQ

16

https://www.youtube.com/watch?v=8aGhZQkoFbQ
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function

Javascript — Callback and Promise

| Call Stack Web Apis
= function printHello{) {

console. log("Hello from baz');

-~ function baz() {
setTimeout{printHello, 3888);

e - L R R
o]

T
18
11 ~ function bar() {
12 baz();
13 %
14
15 = function fool) {
16 bar();

1y 3
s (\
19 +fool);

Click mel Callback Queue -

https://latentflip.com/loupe/

https://latentflip.com/loupe/

In-process / sync

Ohject Ohject?
]
|
|
|
|
|
|
|
|
|
| 1.2
Meassage()
1.3 Retum
Maszage()
| |
| |
| |
stack stack stack stack
frame of frame of frame of - frame of
stack frame main() main() main() stack frame main() stack frame
of main() of main() of main()
{art routine i stack stack stack call to foo stack
t:eaELrFoILilklzn:allTs frame of frame of frame of returns in frame of call to bar
main at the foo() foo() foo() main bary() returns in
program start main
stack
call to bar .
frame of f main calls bar
main calls foo bar() returns in foo

foo calls bar

18

In-process / sync with mediator pattern

Mediator pattern — Diagram of sequence
ComponentA Mediator ComponentB
AmB/ = =

mediate()
>
mediate()
>
return
<
return
BtoA/ B mediate()
. mediate() b
return
.....................)
return
.....................).

Objects no longer communicate directly with each other, but instead
communicate through the mediator. This reduces the dependencies
between communicating objects, thereby reducing coupling.

https://en.wikipedia.org/wiki/Mediator pattern

https://en.wikipedia.org/wiki/Mediator_pattern
https://en.wikipedia.org/wiki/Coupling_(computer_programming)

In-process / sync with mediator pattern

namespace Events.Controllers

{

[ApiController]
[Route("[controller]")]
public class OrderController : ControllerBase

{

private readonly IPublisher _publisher;

public OrderController(IPublisher publisher)
{

}

_publisher = publisher;

[HttpGet]

public async Task NewOrder()

{
var @event = new NewOrderEvent();
await _publisher.Publish(@event);

Example project: 03 EventsinProcessByMediator

20

In-process / sync with mediator pattern

Performance
Scalability
Resilience ?

Redundancy

Identity
provider

i

Authentication

Routing

Service A

API gateway

SSL
offloading
Client apps
Response
caching
Microsoft
Azure

v

=) T]

Elastic
Load
Balancer

Region: US-EAST-1

US-EAST-1A

EC2
Instances

US-EAST-1B

EC2
Instances

Continue to book «Designing Data-Intensive Applications» page 13

21

Out of process / async

Queue

quUEUE

M Queue

I

22

Out of process / async with producer/consumer

Producer Threads

BlockingQueue

Consumer Threads

Thread 3

Thread 4

23

Queue Producer

namespace EventsOutOfProcessByChannel.Controllers

{
[ApiController]
[Route("[controller]")]
public class OrderController : ControllerBase
{
private readonly ChannelWriter<NewOrderEvent> _channelWriter;
public OrderController(ChannelWriter<NewOrderEvent> channelWriter)
{
_channelWriter = channelWriter;
}
[HttpGet]
public async Task NewOrder()
{
// Produce a new event and sent to channel
var @event = new NewOrderEvent();
await _channelWriter.WriteAsync(@event);
}
}
}

C# Channels are an implementation of the
producer/consumer programming model.

https://learn.microsoft.com/en-us/dotnet/core/extensions/channels

Example project: 04 EventsOutOfProcessByChannel

https://learn.microsoft.com/en-us/dotnet/core/extensions/channels

Queue Consumer

namespace EventsOutOfProcessByChannel

{
public class Consumer
{
public static async ValueTask ConsumeWithWhileAsync(ChannelReader<NewOrderEvent> reader)
{
while (true)
{
var @event = await reader.ReadAsync();N
// Simulate some work
Console.WriteLine($"Event elaborating {@event.Created}");
Thread.Sleep(5000);
Console.WriteLine($"Event comsumed {@event.Created}");
}
}
}
}

C# Channels are an implementation of the
producer/consumer conceptual programming model.

https://learn.microsoft.com/en-us/dotnet/core/extensions/channels

Example project: 04 EventsOutOfProcessByChannel

25

https://learn.microsoft.com/en-us/dotnet/core/extensions/channels

Queue Consumer — user feedback — polling vs websocket

15t cycle —

2™ cycle—

Polling transport

Client

Server

HTTP Request

MORNING

Client

Websocket transport

Server

HTTP Request

TIME AXIS

v
NIGHT

ASSERT (Night »= Morning)

E Dual Transport TCP E

connection

Up-Scaling?
Down-Scaling?
Failure and reconnection from clients?

https://mashhurs.wordpress.com/2016/09/30/polling-vs-websocket-transport/

https://dev.to/kevburnsjr/websockets-vs-long-polling-3alo

26

https://mashhurs.wordpress.com/2016/09/30/polling-vs-websocket-transport/
https://dev.to/kevburnsjr/websockets-vs-long-polling-3a0o

Monolith Microservices

. @ itoutposts.com

In a monolithic application running on a single A microservices-based application is a distributed
process, components invoke one another system running on multiple processes or services,
using language-level method or function calls. usually even across multiple servers or hosts

O

https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-
microservice-container-applications/communication-in-microservice-
architecture

e . O

https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/communication-in-microservice-architecture
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/communication-in-microservice-architecture
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/communication-in-microservice-architecture

Out of-process / sync with microservice

namespace MicroserviceA.Controllers

{
[ApiController]
[Route("[controller]")]
public class OrderController : ControllerBase
{
private readonly HttpClient _client;
public OrderController(HttpClient client)
{
_client = client;
}
[HttpGet]
public async Task<long> NewOrder()
{
Console.WriteLine("Sending request to MicroserviceB");
var paymentResult = await _client.GetFromJsonAsync<long>("https://localhost:7165/payment");
Console.WriteLine($"Sent request MicroserviceB wggth result {paymentResult}");
3
}
}

Example project: 05 MicroserviceA/B

28

Out of-process / sync with microservice

namespace MicroserviceB.Controllers

{
[ApiController]
[Route("[controller]")]
public class PaymentController : ControllerBase
{
[HttpGet]
public long Get()
{
Console.WriteLine("Elaborating request");
var result = Random.Shared.Next(0, 100);
Thread.Sleep(1000);
Console.WriteLine($"Elaborated request with result: {result}");
return result;
}
}
}

Example project: 05 MicroserviceA/B

29

Out of-process / sync with microservice

Performance

Scalability ?

Resilience =

Redundancy

PrOXY ~— remeemmmmeceemsmmmmeeemeemmmameemem e PrVAtE NEIWOTK = = = == == === m s = o e m e mmm e e mewmmm e mammmm e e
Caching : ----------------------- e

@H- -
Microservice 1 DB1 Microservice 2 DB2

Client ; ; Load Balancer API lateway Related Services

Internal Routing

Q-

t= Logging q—i- Microservice 3 Microservice 4 DB4

https://medium.com/@beuttam/building-scalable-microservices-with-proxy-load-balancer-api-
gateway-private-network-services-f25c73cc8e02

30

https://medium.com/@beuttam/building-scalable-microservices-with-proxy-load-balancer-api-gateway-private-network-services-f25c73cc8e02
https://medium.com/@beuttam/building-scalable-microservices-with-proxy-load-balancer-api-gateway-private-network-services-f25c73cc8e02

Communication types

Synchronous vs. async communication across microservices

Anti-pattern

Http sync. Http sync. Http sync. Http sync.
SynChronous Client request request et O request Catal request
. rderin atalo —_—
all request/response 1€n S 2 y—— oy —
Http sync. Http sync. H‘L'tp sync. Http sync.

Cyde Such as MVC app, response response response response

API Gateway Same http request/fesponse cycle!

Wq
Asynchronou§ | Hitp sync.
. a t
Cqmm ac_ross interna iz reques Basket e N » Ordering nd Catalog nd
microservices -
) Http sync.

(EVGI‘ItBUSI like AMQP) response
Such as MVC app,

L 4

APl Gateway
“ " Http sync. Http Http Http
Asynchronous i request Polling /SSSENRN Polling Polling
Comm. across Client > et rdering
internal microservices Http sync.
. response
(Polling: Http) Such as MVC app,
APl Gateway

Out of-process / async with microservice - producer

namespace EventsOutOfProcessByDB.Controllers

{

[ApiController]
[Route("[controller]")]
public class OrderController : ControllerBase

{

private readonly EventBusContext _eventBusContext;

public OrderController(Event

text eventBusContext)

{
_eventBusContext = eventBusContex
}
[HttpGet]
public async Task NewOrder()
{
// Produce a new event and sent to channel
var @event = new NewOrderEvent();
@event.UserEmail = "diego@bonura.dev";
var content = JsonSerializer.Serialize(@event, @event.GetType());
var typeName = @event.GetType().FullName!;
var message = new Message()
{
Type = typeName,
Content = content
b
_eventBusContext.Add(message);
await _eventBusContext.SaveChangesAsync();
}

Example project: 06 EventsOutOfProcessByDatabaseConsumer

32

Out of-process / async with microservice - consumer

protected override async Task ExecuteAsync(CangellationToken stoppingToken)

{
while (true)

{
var messageToElaborate = _eventBusContext.Set<Message>().Where(m => m.ProcessedOn == null).OrderBy(m
=> m.OccurredOn) .FirstOrDefault();
if (messageToElaborate != null)

{
var type = AppDomain.CurrentDomain.GetAssemblies().Where(a => !a.IsDynamic).SelectMany(a =>

a.GetTypes()).FirstOrDefault(t => t.FullName == messageToElaborate.Type);
var domainEvent = (INotification)JsonSerializer.Deserialize(messageToElaborate.Content, type);

await _publisher.Publish(domainEvent);
messageToElaborate.Pro®gsedOn = DateTime.Now;

await _eventBusContext.Sa%eChangesAsync();

}

await Task.Delay(1000);

Example project: 06 EventsOutOfProcessByDatabaseConsumer 33

Out of-process / async with microservice consumer

Performance

Scalability

Resilience ?
Redundancy

Is it easy to add new consumers to increase
performance?

we need to introduce a row lock (on db side) or optimistic
concurrency control (occ)

https://medium.com/@beuttam/building-scalable-microservices-with-proxy-load-balancer-api-
gateway-private-network-services-f25¢c73cc8e02

34

https://medium.com/@beuttam/building-scalable-microservices-with-proxy-load-balancer-api-gateway-private-network-services-f25c73cc8e02
https://medium.com/@beuttam/building-scalable-microservices-with-proxy-load-balancer-api-gateway-private-network-services-f25c73cc8e02

O

O

Message broker

an intermediary for messaging

Message broker

Message flow in an microservice architecture

using a messagebroker

\ 7
Message

PRODUCER

MESSAGE BROK

o)

i

SY3IINNSNOD

36

Message broker

Message brokers

« can validate, store, route, and deliver messages to the appropriate
destinations.

« act as intermediaries between other applications, allowing senders to
issue messages without knowing where the recipients are located,
whether or not they are active, or how many there are.

« simplifies the separation of processes and services within systems.

Protocols

* AMQP: The Advanced Message Queuing Protocol (RabbitMQ/ Azure
Service Bus / Amazon MQ / Apache ActiveMQ)

« Kafka: binary protocol over TCP

« MQTT: Lightweight and Efficient for loT Messages (Mosquitto)

37

RabbitMQ

type=topic

¥ orange. *

* ok rabbit

Q1

Q2

Client

Sy

rpc_gueue

Request
reply_to=amgp.genXaz...
correlation_id=abe

server

reply_to=amg.gen-xa2...

Reply
correlation_id=abe

38

RabbitMQ

Exchange Queue

\
Dead Letter Dead Letter Exchange
Queue

39

RabbitMQ - Producer

public class EventBusRabbitMQ : IEventBus
{
public void Publish(IEvent @event)
{
var factory = new ConnectionFactory { HostName = "localhost" };
using var connection = factory.CreateConnection();
using var channel = connection.CreateModel();

channel.QueueDeclare(queue: "task_queue",
durable: true,
exclusive: false,
autoDelete: false,
arguments: null);

string message = JsonSerializer.Serialize(@event, typeof(NewOrderEvent));
var body = Encoding.UTF8.GetBytes(message);

var properties = channel.CreateBasicProperties();
properties.Persistent = true;

channel.BasicPublish(exchange: string.Empty,
routingKey: "task_queue",
basicProperties: properties,
body: body);

RabbitMQ - Consumer

var factory = new ConnectionFactory { HostName = "localhost" };
using var connection = factory.CreateConnection();
using var channel = connection.CreateModel();

channel.QueueDeclare(queue: "task_queue",
durable: true,
exclusive: false,
autoDelete: false,
arguments: null);

channel.BasicQos(prefetchSize: 0, prefetchCount: 1, global: false);
var messageConsumer = new EventingBasicConsumer(channel);

messageConsum

{

eceived += async (model, ea) =>

byt ody = ea.Body.ToArray();

@event = (NewOrderEvent)JsonSerializer.Deserialize(body, typeof(NewOrderEvent));
Console.WriteLine($"Received from {@event.UserEmail}");
await Task.Delay(100);

channel.BasicAck(deliveryTag: ea.DeliveryTag, multiple: false);

H

channel.BasicConsume(queue: "task_queue",
autoAck: false,
consumer: messageConsumer);

nsole.ReadLine();

Distribute application with message broker

Performance

Scalability

Resilience ?
Redundancy

Is it easy to add new consumers to increase

performance?

42

Serialization performance

2000
1800
1600
1400
1200

1000

200

o

I Serialize
B Deserialize

=—e=BinarySize

Large Array(Small Object[1000]) 10000 lteration (ms, binarysize)

Mesffc.:-gégack MFE:SSE[T_;ZT(MsgPack-Cli = protobuf-net |ZeroFormatter Json.NET JSOH'NF::—:.I-HGZi
90.5203 112.2836 333.7555 A448.4978 127.6575 875.7939 1265.6311
114.9669 124.6713 976.4129 592.2848 115.8211 1546.8205 1902.2232

1803 562 2347 2248 5004 6096 458

mmm Serialize mmmDeserialize =—e—BinarySize

https://qithub.com/neuecc/Utf8Json

https://github.com/MessagePack-CSharp/MessagePack-CSharp

7000

5000

3000

2000

43

https://github.com/neuecc/Utf8Json
https://github.com/MessagePack-CSharp/MessagePack-CSharp

Serialization performance

Json
Overview Messages Message rates
Name Type Features State Ready Unacked Total incoming deliver / get ack
task_queue classic D running 1,835 1] 1,835 36/s
Add a new queue
Protobuf
Overview Messages Message rates
Name Type Features @ State Ready Unacked Total
task_queue classic D running 237 0 237 52/s
Add a new queue f

incoming deliver / get ack

a4

Generate Ids on distributed application

We need to generate Id on the client before inserting a new row into the database:
Possibilities:

« GUID generated on client (too big — not sortable)

» Sql server — single table (Single point of failure — Not scalable)

» Specific services as snowflake and zookeeper (Scalable but another service to mantain)
» Sequence on db and cache chunks

protected override void OnModelCreating(ModelBuilder modelBuilder)

{

modelBuilder.HasSequence<int>({"BlogIdSequence")
.IncrementsBy(108); //18 is default

modelBuilder.Entity<Blog>()
.Property(b => b.Name)
.IsUnicode(false)
.HasMaxLength(20);

modelBuilder.Entity<Blog>()
.Property(b => b.BlogIld)
|.UseHiLn["BlogIdSequence”);

}

https://medium.com/@sandeep4.verma/system-design-distributed-global-unique-id-
generation-d6a440cc8e5

https://medium.com/@)jitenderkmr/demystifying-snowflake-ids-a-unique-identifier-in-
distributed-computing-72796a827c9d

https://phanikumaryadavilli.medium.com/generating-distributed-uuids-using-zookeeper-
a02cabfda0e9

45

Distributed
application with a
framework

Masstransit

Easily build reliable
distributed applications

First class testing support
Write once, then deploy using RabbitMQ, Azure Service Bus, and Amazon SQS
Observability via Open Telemetry (OTEL)

Fully-supported, widely-adopted, a complete end-to-end solution

47

Masstransit - Producer

public class OrderController : ControllerBase

{
private readonly IBus _bus;
public OrderController(IBus bus)
{
_bus = bus;
}
[HttpGet]
public async Task NewOrderAsync()
{
// Produce a new event and sent to channel
var @event = new NewOrderEvent();
@event.UserEmail = "diego@bonura.dev";
await _bus.Publish(@event);
}
}

48

Masstransit - Consumer

namespace DistributedAppWithMassTransitConsumer

{
public class lMessageConsumer : IConsumer<NewOrderEvent>
{
readonly ILogger<Messag umer> _logger;
public MessageC er(ILogger<MessageConsumer> logger)
{
_logger = logger;
public Task Consume(ConsumeContext<NewOrderEvent> context)
{
_ .LogInformation("Received ordine from: {email}", context.Message.UserEmail);
return Task.CompletedTask;
}
}
}

49

O .

Applications go
. wrong

O

The major difference between a thing that might go wrong and a thing that cannot possibly
go wrong is that when a thing that cannot possibly go wrong goes wrong it usually turns out
to be impossible to get at or repair.

—Douglas Adams, Mostly Harmless (1992)

Applications go wrong

Alice:

l} begin transaction
currently_on_call = {

where on_call = true
and shift id =1234
)

Now currently_on_call=2

update doctors

set on_call = false
where name ="Alice’
and shift_id = 1234

}

S commit transaction

select count(*) from doctors

& if (currently_on_call »>=2) {

‘ Alice

false

name on_call
Alice true
Bob true
Carol false
|Bob false |
name on_call
Alice false
Bob false
Carol false

Bob:

begin transaction

currently_on_call = (
select count(¥) from doctors
where on_call = true
and shift_id = 1234

)

Now currently_on_calf=2

if (currently_on_call >=2) {
update doctors
set on_call =false
where name ='Bob’
and shift_id = 1234
}

commit transaction

Figure 7-8. Example of write skew causing an application bug.

Page 246 of Design Data-Intensive Applications

51

Logging on distributed application

I N N e

Producer Consumer1 Consumer2

Log files

Log files Log files

How to get information when things go wrong?

52

Callect logs in one place

Server 1

App X1

Logging in
format F1

Filebeat

Server 2

App X2

Logging in
format F2

ELK Stack Server

logstash elasticsearch

Filebeat

-
S > - v ‘

kibana

53

Call logs in one place

95,471,548 hits

‘ kibana

>~ Search... (e.g. status:200 AND extension:PHP)

New Save Open Share Inspect Bl 5seconds € @ Last60days 2

Options C Refresh

Discover Add a filter +
Visualize flb-* January 17th 2021, 11:00:56.983 - March 18th 2021, 11:00:56.983 — Auto -
Selected fields
Dashboard 2,000,000
? _source
- 1,500,000
Tlliem Available & £
fields & 1000000
Prometheus Popular 500,000 HHHHHHHHH m
t logs.message 0 ﬂ
Alerting 2021-01-24 2021-01-31 2021-02-07 2021-02-14 2021-02-21 2021-02-28 2021-03-07 2021-03-14
© @fb_timestamp time per day
Dev Tools t id
Time _source
t _index
Management =
2 » March 18th 2021, 11:00:39.239 Gfp timestamp: March 18th 2021, 11:00:39.239 log: stream: stdout time: March 18th 2021,
t S 11:00:39.239 kubernetes.pod name: api-78b695c46b-j8v69 kubernetes.namespace name: default
t _type kubernetes.pod id: f162dd48-e68d-461d-bcc6-b3581fceadza

t kubernetes.anno...

? kubernetes.anno...
» March 18th 2021, 11:00:39.238

? kubernetes.anno...

Collapse

t_kubernetes.anno...

kubernetes.labels.app kubernetes io/component: backend

kubernetes.labels.app_kubernetes_io/managed-by: hybris-operator

@fb_timestamp: March 18th 2021, 11:00:39.238 log: stream: stdout time: March 18th 221,

11:00:39.238 kubernetes.pod_name: api-78b695c46b-j8v69 kubernetes.namespace_name: default

kubernetes.pod_id: f162dd48-e68d-461d-bcc6-b3581fc6a97a

cwk
Stack

Seqr

DATADOG

54

O

O

Observability

o On distributed application logs monitoring
could be difficult

Main concepts of observability

l"rhre_e_ Pillars of Ol:se_r'\fo».b?h‘tlf}

v

Lo?‘s

Metrics

Logs in the technology and
development field give a

written record of happenings
within a system, similar to the

captain's log on a ship.

\

Troces

Metrics are a set of values that are

tracked over time.

A trace is a means to track a user request
from the user interface all the way through
the system and back to the user when they
receive confirmation that their request has
been completed. As part of the trace, every
operation executed in response to the
request is recorded.

56

Observability standard

é Telemetry

OpenTelemetry is an open-source CNCF (Cloud Native
Computing Foundation) project formed from the merger of
the OpenCensus and OpenTracing projects. It provides a
collection of tools, APIs, and SDKs for capturing metrics,
distributed traces and logs from applications.

57

OpenTelemetry on distributed application

I N N e

Producer Consumer1 Consumer2

— 00—
OpenTelemetry
Collector

58

Example

Trace:

MassTransit Producer\Order 182aidc

4 Spans

Metric:

ansit Consumer (2) MassTransit Producer (2)

MassTransit Producer

.MassTransit Consumer

10.58ms

Today 4:59:17 pm

a minute ago

59

O .

Distributed lock

Distributed locks are a very useful primitive in
many environments where different
processes must operate with shared resources
in a mutually exclusive way.

Redis

The open source, in-memory data store used by millions of
developers as a database, cache, streaming engine, and
message broker.

Created by: Salvatore Sanfilippo

https://redis.io/ ®

. Garnet

Docs

Blog

Garnet

GitHub

A high-performance cache-store from Microsoft Research C

. —]

High Performance

Garnet uses a thread-scalable storage layer called
Tsavorite, and provides cache-friendly shared-
memory scalability with tiered storage support.

Garnet supports cluster mode (sharding and
replication). It has a fast pluggable network
design to get high end-to-end performance

(throughput and 99th percentile latency). Garnet

can reduce costs for large services.

Get Started - 5min

- '- iC [m
a . _R
Rich & Extensible

Garnet uses the popular RESP wire protacol,
allowing it to be used with unmodified Redis
clients in any language. Garnet supports a large
fraction of the Redis API surface, including raw
strings and complex data structures such as
sorted sets, bitmaps, and HyperLoglLog. Garnet
also has scalable extensibility and transactional
stared procedure capabilities.

https://microsoft.github.io/garnet/

Modern & Secure

The Garnet server is written in modern .NET C#,
and runs efficiently on almost any platform. It
warks equally well on Windows and Linux, and is
designed to not incur garbage collection
overheads. You can also extend Garnet's
capabilities using new .NET data structures to go
beyond the core APL. Finally, Garnet has efficient
TLS support out of the box.

Q, Search

ctrl

K

Cl_» 5 — ERabblt
Place an /\
order

Update user Update user
statistics history

Lock user _id

Redis lock

static async Task Main(string[] args)

{
var endPoints = new List<RedLockEndPoint> { new DnsEndPoint("localhost", 6379) };
var redlockFactory = RedLockFactory.Create(endPoints);

var resource = "my-order-id";
var expiry = TimeSpan.FromSeconds(30);

await using (var redLock = await redlockFactory.CreateLockAsync(resource, expiry))
{

// make sure we got the lock

if (redLock.IsAcquired)

{

}

// do stuff

64

Saga

When you have to orchestrate events!

__

Saga i
|

Service Service Service :

= Message/EvenfL = Message/Evenfh = i

= . = |

Locall Locall Locall i

Transaction Transaction Transaction :

I

I

I

Saga: consistency models

Immediate consistency: once a write operation (e.g., updating a piece of data) is
completed, any subsequent read operation (e.g., retrieving that data) will reflect the
updated value.

* expensive in terms of performance
* notideal in all distributed systems

ACID (atomicity, consistency, isolation, durability).

Eventual consistency: may be a period of time during which different nodes or
replicas in the system have different versions of the data.

« commonly used in systems like NoSQL databases

BASE (basically-available, soft-state, eventual consistency)

66

Saga: trade off

Immediate
Consistency

High
Availability

Microservices Monoliths

https://privalwalpita.medium.com/steering-clear-of-distributed-monolith-traps-in-your-journey-to-

effective-microservices-86671be0b604

https://www.youtube.com/watch?v=p2GIRToY5HI

67

https://priyalwalpita.medium.com/steering-clear-of-distributed-monolith-traps-in-your-journey-to-effective-microservices-86671be0b604
https://priyalwalpita.medium.com/steering-clear-of-distributed-monolith-traps-in-your-journey-to-effective-microservices-86671be0b604
https://www.youtube.com/watch?v=p2GlRToY5HI

Saga approaches: choreography and orchestration

Choreography: without a centralized point of control

=\ Nis

Service A

Client Request / 4
>

| » MMM .E

Service B
Message broke\

NE

Service C

https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/saga/saga

68

https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/saga/saga

Saga approaches: choreography and orchestration

Orchestration: centralized controller tells participants what to execute

Orchestrator Service A

Clienltrequest }.‘? . ?‘E

Service B

5 =

NS

Service C

https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/saga/saga

69

https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/saga/saga

Saga with MassTransit

public OrderStateMachine()

{
InstanceState(x => x.CurrentState);
Event(() => NewOrderEvent, x => x.CorrelateById(context => context.Message.OrderId));
Event(() => OrderProcessed, x => x.CorrelateById(context => context.Message.OrderId));
Event(() => OrderCancelled, x => x.CorrelateById(context => context.Message.OrderId));
Initially(
When(NewOrderEvent)
.Then(context =>
{
/ context.Saga.ProcessingId = Guid.NewGuid();
B
.Publish(context => new ProcessOrder(context.Saga.CorrelationId))
.TransitionTo(Pending)
.Then(context => Console.Out.WriteLineAsync($"From New to Pending: {context.Saga.CorrelationId}"))
);
During(Pending,
When(OrderProcessed)
.TransitionTo(Accepted)
.Then(context => Console.Out.WriteLineAsync($"From Pending to Accepted: {context.Saga.CorrelationId}"))
.Finalize(),
When(OrderCancelled)

.TransitionTo(Cancelled)

.Then(context => Console.Out.WriteLineAsync($"From Pending to Faulted: {context.Saga.CorrelationId} for reason:
{context.Message.Reason}"))

.Finalize(Q)

);

SetCompletedWhenFinalized();

Saga choreography
MassTransit elaborates saga and creates few queue and exchanges on RabbitMq

Exchanges

All exchanges (13)

Pagination

Page of 1 - Filter: [Regex ?

Virtual host Name Type Features Message rate in Message rate out | +/-
/ (AMQP default) direct »
Message fanout »)
! Orderstate fanout D
SagaWithMasstransitShared:NewOrderEvent fanout D 0.00/s 0.00/s
/ SagaWithMasstransitShared:OrderCancelled fanout D 0.00/s 0.00/s
SagaWithMasstransitShared:OrderProcessed fanout D 0.00/s 0.00/s
/ SagaWithMasstransitShared:ProcessOrder fanout D 0.00/s 0.00/s
amaq.direct direct »)
! amq.fanout fanout D
amq.headers headers D
/ amaq.match headers »
amq.rabbitmaq.trace topic DI

! amq.topic topic D

Actor model

Instead of calling methods, actors send
messages to each other!

https://doc.akka.io/docs/akka/current/typed/guide/actors-intro.html

https://learn.microsoft.com/en-us/dotnet/orleans/overview ¢

Actor model

The Actor Model: A Paradigm for Concurrent and
Distributed Computing

The actor model is a programming model in which each actor is a lightweight,
concurrent, immutable object that encapsulates a piece of state and corresponding

behavior. Actors communicate exclusively with each other using asynchronous
messages.

73

Actor model

When we have a Producer and Consumer we
usually send message to a queue

Actors interacting with each other
by sending messages to each other

On actor model, we can implement Producer and
Consumer as actor.

In Producer, we just get the actor reference of
Consumer actor to send messages to Consumer’s
mailbox.

74

Actor model

Mailbox

75

Actor model: History 1973

The Actor Model is a mathematical theory of computation that treats
“Actors” as the universal conceptual primitives of concurrent digital
computation.

The actor model was inspired by physics

Actors is based on “behavior’ as opposed to the “class”
concept of object-oriented programming.

https://en.wikipedia.org/wiki/Actor_model

Carl Hewitt

76

Actor model

Main principles:

1. Isolation: Actors are independent, with their own state and
behavior.

2. Single thread: Actors process requests one at time

3. Messaging: Actors interact by exchanging asynchronous
messages.

4. Location Transparency: Actors'locations are abstracted,
enabling distribution.

77

Actor model: life cycle

78

Actor model: implementations

AR akka Orleans

Java / c# c#

https://akka.io/
https://getakka.net/

https://learn.microsoft.com/en-us/dotnet/orleans/overview

79

Actor model implementations on Orleans
Microsoft research (2010)

https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/

Orleans invented the Virtual Actor abstraction

Actors are purely logical entities that always exist, virtually. An actor cannot
be explicitly created nor destroyed, and its virtual existence is unaffected by
the failure of a server that executes it. Since actors always exist, they are
always addressable.

80

https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/

Actor model implementations on Orleans - Grain

1. Grain: grains are implementation of a virtual actor.
2. Interfaces: grains define interfaces.

3. Grain: has always an identity (string, number, guid)
4. Persistence: grains could volatile or persisted

5. Lifecycle: grains could be terminated to free computer
resources

https://learn.microsoft.com/en-us/dotnet/orleans/overview#what-are-grains

81

https://learn.microsoft.com/en-us/dotnet/orleans/overview#what-are-grains

Actor model implementations on Orleans - Silo

A silo hosts one or more grains

Cluster (1/n) Grains

=

Grains

Grains

7 AN

You can have any number of clusters, each cluster has one or more silos, and
each silo has one or more grains

https://learn.microsoft.com/en-us/dotnet/orleans/overview#what-are-silo
S

https://learn.microsoft.com/en-us/dotnet/orleans/overview#what-are-silo

Actor model implementations on Orleans - Silo

1. Host grains
2. Responsible to activate and deactivate grains
3. Typically: 1 silo per container/node

4. Could be embedded into main application or in separate
container/node

5. Clustering silos is easy

83

Actor model implementations on Orleans - Dashboard

https://github.com/OrleansContrib/OrleansDashboard

OrleansDashboard [EeNEEW

TOTAL ACTIVATIONS ACTIVE SILOS
& " :
More info @ More info @
ERROR RATE REQ/SEC AVERAGE RESPONSE TIME

n Details

0.00% ﬂ 462 525.04ms

Cluster Profiling

& Silos

@ Remir

0 lnumberofrequests per second
= log

/ failed requests average latency in milliseconds

30 4500
4000

* 3500

20 3000
2500

1 2000

10 1500
1000

s 500
0 0
10:52:00 10:52:30 10:53:00 10:53:30

Methods with Most Calls Methods with Most Exceptions Methods with Highest Latency

ReadAll 1.22req/sec No data ReadAll 0.35ms/req

Orleans. Runtime Members| embershipTableSystemTarget Orleans. Runtime. Members embershipTableSystemTarget

GetRuntimeStatistics 0.52reqfsec GetRuntimeStatistics 1.27ms/req

Orleans.Runtime. Management.ManagementGrain Orleans.Runtime. Management.ManagementGrain

GetRuntimeStatistics 0.52reqfsec GetRuntimeStatistics 0.22ms/req

Orleans.Runtime. SiloControl Orleans. Runtime.SiloControl

TopGrainMethods 0.52req/sec TopGrainMethods 0.53ms/req

OrleansDashboard.Implementation Grains.DashboardGrain OrleansDashboard.Implementation.Grains. DashboardGrain

SubmitTracing 0.52reqfsec SubmitTracing 0.08ms/req

£ Pref s OrleansDashboard.Implementation.Gra boardGrain OrleansDashboard.Implementation.Gra hboardGrain
ref

http://localhost:8080

http://localhost:8080/

Actor model implementations on Orleans — Calling actors

In-memory
User/jane@email.com or persisted

(—*—\

Grain = identity + behavior [+
| I

——— ———/

class User : Grain, IUser

You can start an actor using grainFactory:
_grainFactory.GetGrain<IGrainA>("my-id");

Inside an actor:

var grainB = this.GrainFactory.GetGrain<IGrainB>(id);

Orleans: Actor mailbox addresses are full typed

85

Actor model implementations on Orleans — Deadlock

Single thread: Actors process requests one at time

a.Callother(b) A B b.Callother(a)

Log(uln)
await other.Ping()

]
&
)
&
Blocked until timeout

and cannot process
the Ping() request

Timeout
exception
thrown back
to caller

Actively executing

KRR RRRELRR]

[o

[
|
[
|
[
I Each grain is busy
|
[
|
[
[

Awaiting response

Call chain 1

i
HEXKE

Call chain 2

https://learn.microsoft.com/it-it/dotnet/orleans/grains/request-scheduling

Es 14: MicrosoftOrleansDeadlock

86

https://learn.microsoft.com/it-it/dotnet/orleans/grains/request-scheduling

Actor model implementations on Orleans — Persistence

public HelloGrain(
[PersistentState("hello")] IPersistentState<HelloState> helloState,
ILogger<HelloGrain> logger)

_logger = logger;
_helloState = helloState;

}
public override Task OnActivateAsync(CancellationToken cancellationToken)
{
return base.OnActivateAsync(cancellationToken);
}

public async Task<string> SayHello(string greeting)
{

_helloState.State.Counter++;

_logger.LogInformation("Start say Hello for {grainId} with counter {counter}",
IdentityString, _helloState.State.Counter);

await Task.Delay(1000);

// Store state
await _helloState.WriteStateAsync();

//DeactivateOnIdle();
return $"Hello, {greeting}!";
}

public override Task OnDeactivateAsync(DeactivationReason reason, CancellationToken
cancellationToken)

{
}

return base.OnDeactivateAsync(reason, cancellationToken);

Es 15: MicrosoftOrleansPersistence
87

Actor model implementations on Orleans — Streaming

A typical scenatrio for Orleans Streams is when you
have per-user streams and you want to perform
different processing for each user, within the context of
an individual user.

Producer

_stream = this.GetStreamProvider("StreamProvider").GetStream<int>(streamId);

Consumer

// ImplicitStreamSubscription attribute here is to subscribe implicitely to all stream within
// a given namespace: whenever some data is pushed to the streams of namespace
Constants.StreamNamespace,

// a grain of type ConsumerGrain with the same guid of the stream will receive the message.
// Even if no activations of the grain currently exist, the runtime will automatically

// create a new one and send the message to it.
[ImplicitStreamSubscription("StreamNamespace")]

public class ConsumerGrain : Grain, IConsumerGrain, IStreamSubscriptionObserver

https://learn.microsoft.com/en-us/dotnet/orleans/streaming/streams-why

Es 16: MicrosoftOrleansStreams
88

Actor model implementations on Orleans — Transactions
Orleans supports distributed ACID transactions against persistent grain state.

public interface IAccountGrain : IGrainWithStringKey

{

[Transaction(TransactionOption.Join)]
Task Withdraw(int amount);

[Transaction(TransactionOption.Join)]
Task Deposit(int amount);

[Transaction(TransactionOption.CreateOrJoin)]
Task<int> GetBalance();

await _transactionClient.RunTransaction(
TransactionOption.Create,
async () =>

{

await fromAccount.Withdraw(transferAmount);
await toAccount.Deposit(transferAmount);

;

https://learn.microsoft.com/en-us/dotnet/orleans/grains/transactions

Es 17: MicrosoftOrleansTransactions

89

https://learn.microsoft.com/en-us/dotnet/orleans/grains/transactions

Actor model: why?

1. Problem with multi thread access Object1 Object2 Object3

(
=

User o e
n

1. Few users call an API
2. Shared services running on same APP
3. Few threads could access same service

https://getakka.net/articles/intro/what-are-actors.html#the-illusion-of-encapsulation

20

https://getakka.net/articles/intro/what-are-actors.html#the-illusion-of-encapsulation

Actor model: why?

1. Problem with multi thread access — classical solution

public woid Credit{User user, decimal amount)

{

if (user.amount < @)

{

throw new ArgumentOutOfRangeException({nameof(amount), "The credit amount cannot be negative.™);

¥

lock (balancelock)

1
/ user.balance += amount;
¥

T

No Sync False 385315 668500

Lock Statement True 1846390 8938287

Lock is not performant

91

Actor model: why?

1. Problem with multi thread access — actor model solution

1. One actor per user

2. No need to synchronize methods

3. Actors process requests one at time

4. Actors are small
600,000 __ 160,000,
£ 500,000 Emo.mu‘- i S
% e % 120,000
@ @ 100,000/
EBW.UW ;t 80,000/
2 200,000 g 60,000
g 3 40,000
£ 100,000 £ 20,000/

o 25 50 75 100 125 EK 10K 40K 100K 0.5M 1M 2M

Mumber of Servers Mumber of Actors
Figure 6: Throughput of Halo 4 Presence service.

Linear scalability as number of server increases. Figure 7: Throughput of Halo 4 Presence service.

Linear scalability as number of actors increases.

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/Orleans-MSR-
TR-2014-41.pdf

92

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/Orleans-MSR-TR-2014-41.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/Orleans-MSR-TR-2014-41.pdf

Actor model: why?

1. Problem with state-less services

User App DB

1. User calls an API
2. App loads state from DB
3. App holds state in memory for better performance

https://www.youtube.com/watch?v=iE8cisVqoj8

93

https://www.youtube.com/watch?v=iE8cisVgoj8

Actor model: why?

1. Problem with state-less services

]

User

h |
— Y
h |

BN =

i

/ App1 Clustered
4

F—
g

App2 Clustered

DB

App3 Clustered

User calls an APl on App1
App1 loads state from DB
App1 holds state in memory for better performance
User calls an APl on App3

94

Actor model: why?

1. Problem with state-less services — classical solution

Cache1 Clustered Cache2 Clustered

=

App1 Clustered

User

s —

App3 Clustered — —
External service

There are only two hard things in Computer Science: cache invalidation and

naming things.

-- Phil Karlton 95

Actor model: why?

1. Problem with state-less services — actor model solution

/ I
App1 Clustered
S &
—
W r EEE
X

User App2 Clustered
XD

ECEE
E—

App3 Clustered

T Orleans

oIms
cIms
——

External service

96

Actor model;: when?

v/

PON=

PO~

Actor are small enough to be single-thread

Many entities loosely coupled (billions!)

No need of a global coordinator, only between actors
You know your project

Entity must access to the state of other entities
Entities relations are complex (ERP, MES...)
Small entities but fat

You don’t know your project

97

Actor model: examples

Connected dewices in millions

(=)

Number of Internet of Things (IoT) connected

devices worldwide from 2019 to 2030

Q0

Q0

LA
| 9
(=)

Fa
[+a)
3

L]

2019 2020 2021 2022

[
(=)
()

2023~

==
[=]
[}
Fud
[

2024*

‘]
o

[=]

==

Fa

=9

2025*

21,094.9

202e*

2027+

P
L
28]
P
[

2028*

(=]

-,

i
P

2029*

29,4221

2030*

https://www.statista.com/statistics/1194682/iot-connected-devices-vertically/

98

https://www.statista.com/statistics/1194682/iot-connected-devices-vertically/

Actor model: examples

Get list of remote hubs

Adel hub Push
Notifier

Grain

Notifications

Batehed updo:tes

Remote
Locotion

Hub

Location

Hub
%

Device
Grain

Position upda‘tesl

https://learn.microsoft.com/en-us/dotnet/orleans/tutorials-and-samples/

29

https://learn.microsoft.com/en-us/dotnet/orleans/tutorials-and-samples/

Security in
Distributed
Applications

Man in the middle

Different services with
different protocols:

Web http/https
gRPC

AMQP
Database

PWhN =

101

Man in the middle

TLS: the server has a TLS certificate and a public/private

key pair, while the client does not

Server

Server presents
TLS certificate

Client
Client connects to server
Client verifies
1 server's certificate
=] (@) €
= p
Client & server exchange information over
encrypted TLS connection
’ &
N

\4

But we have server to server communications!

102

Man in the middle

mTLS: mutual TLS (internal CA)
*Zero Trust means that no user, device, or network traffic is
trusted by default, an approach that helps eliminate many
security vulnerabilities.

Client Server
Client connects to server |
__>
. . Server presents
Client verifies .
server's certificate TLS certificate
© ¢eromrrre e B
) [—]
= Client presents Server verifies Server o
TLS certificate client's certificate grants access = —

Client & server exchange information over
encrypted TLS connection

&

N

— W

https://www.elastic.co/guide/en/kibana/current/elasticsearch-mutual-tls.html

https://www.rabbitmqg.com/ssl.html#peer-verification

https://learn.microsoft.com/en-us/samples/dotnet/samples/orleans-transport-layer-

security-tls/ 103

Distributed Denial of Service

Million of requests per seconds
from different clients

104

Distributed Denial of Service

https://blog.cloudflare.com/ddos-threat-report-2023-q1/

aé CLOUDFLARE

1.40 Tb/s
2\

1.50 Tb/s

130 Tb/s P ——_——
I/ 7-_
/ “~. A
-3 ,/) \

1.20 Tb/s /
g
110 To/s | e £ |
e ~

1Tb/s
900 Gb/s
800 Gb/s
700 Gb/s
600 Gb/s | \
500 Gb/s \
400 Gb/s |
300 Gb/s ‘y‘ \
200 Gb/s /
100 Gb/s |

18:25:25

18:24:50 18:24:55 18:25:00 18:25:05 18:25:10 18:25:15 18:25:20

0b/s =
18:24:20 18:24:25 18:24:30 18:24:35 18:24:40 18:24:45

Cloud providers have few services.

https://azure.microsoft.com/it-it/products/ddos-protection/

https://aws.amazon.com/it/shield/
105

Distributed Denial of Service

Rate limit on http:

429 Too Many Requests The 429 status code indicates that the user has sent too many requests in a given amount of time ("rate limiting").

GLOBAL LATENCY INDICATORS

25000

20000

15000

10000

5000
[i] —

1= 800ms 800ms <i=12s i=12s failed

SCENARIO LATENCY INDICATORS

6000
5000
4000
3000
2000
1000

V] —

1= 800ms 800ms <t=12¢ 1=12s Tailed

https://learn.microsoft.com/en-us/aspnet/core/performance/rate-limit?view=aspnetcore-8.0

Es 18: MicrosoftRateLimit
106

Handling secrets

Services could need to connect:

Databases

Caches

External services on cloud
Other clusters

Other services

ORwON =~

How to handle secrets correctly?

107

Handling secrets

Blogpost | Certificates & secrets = X

I L Search (Ctrl+/)] « Credentials enable confidential applications to identify themselves to the authentication service when receiving tokens at a web addressable location (using an HTTPS ~ ~
scheme). For a higher level of assurance, we recommend using a certificate (instead of a client secret) as a credential.

2 Overview

& Quickstart i
Certificates

#° Integration assistant (preview) Certificates can be used as secrets to prove the application’s identity when requesting a token. Also can be referred to as public keys.

Manage T Upload certificate
B Branding Thumbprint Start date Expires

3 _—
D Authentication No certificates have been added for this application.

Certificates & secrets
1" Token configuration

- API permissions Client secrets

& Expose an API A secret string that the application uses to prove its identity when requesting a token. Also can be referred to as application password.

¥ Oowners + New client secret

Using certificates to prove application identity!

1. No need to share password
2. Security is on network layer (mTLS)

108

Handling secrets

Test Azure App | Certificates & secrets = - X

‘ P Search

‘«

i Overview
Quickstart

Fd Integration assistant

Manage

= Branding & properties
3 Authentication

{I!' Token configuration
-9 APl permissions

& Expose an API

B App roles

&8 Owners

,E;“ Got feedback?

Credentials enable confidential applications to identify themselves to the authentication service when receiving tokens at a web addressable location (using an HTTPS
scheme). For a higher level of assurance, we recommend using a certificate (instead of a client secret) as a credential.

0 Application registration certificates, secrets and federated credentials can be found in the tabs below. S
Certificates (0) Client secrets (2) | Federated credentials (0)
A secret string that the application uses to prove its identity when requesting a token. Also can be referred to as application password.
+ New client secret
Description e Expires Value (0 Secret ID
Azure 12/31/2033 o 4 b B [
Authentication Cede 12/31/9999 1 | 3 .. [Iﬁ[

Using secrets to prove application identity!

1. Services must send secret to other service
2. Security is on application layer

109

Handling secrets

What happens is a certificate or secrets is stolen?

Problems:

1. If a certificate/secrets is compromised on one
single service, | must invalidate it

2. Change certificate/secrets could be done on
runtime but on cluster is complex

3. Certificates/Secrets must have an expire time

g v Add a client secret g
Example App | Certificates & secrets = -

Expire Recommended: § months

Recommended: & maonshs

tificates {0 Client sacrets (0

5L TN appacation w

o 110

Handling secrets

Service to handle secrets

Secrets management

Centrally store, access, and deploy

rets across applications,

systems, and infrastructure

Automated PKI
infrastructure
Use Vault to quickly create X.509

certifi ondemand and reduce

AzureKeyVault

Dynamic secrets

A dynamic secret is gen

on

demand and is unique to a client

Identity-based access

Authenticate and access different

clouds, systems, and endpoints

using trusted identities.

Kubernetes secrets

Inst;

Vault using a

to securely inject

Data encryption and
tokenization

Keep application data sec

one centralized worl

elm chart

your application stack.

ure with

v for data

that resides in untrusted er semi-

trusted systems outside of Vault.

-

HashiCorp

Vault

Database credential

rotation

Automatically r

secrets engine

Key management

Use a standardi:

ution and lifecycle

gement across KMS

providers.

tabase

database

d workflow for

/\|/

AWS Secrets Manager

https://www.vaultproject.io/

111

Handling secrets Hashcorp
Vault

How to use it?

MANAGE DB
REQUEST DB CREDENTIALS v Vault CREDENTIALS
"~ USERNAME & PASSWORD SECRETS |
.NET APP 1 @

DATABASE

£

READ DATA FROM THE DATABASE USING
THE VAULT MANAGED CREDENTIALS

static async Task Main(string[] args)

{
// Initialize one of the several auth methods.
TAuthMethodInfo authMethod = new TokenAuthMethodInfo("testtoken");
// Initialize settings. You can also set proxies, custom delegates etc. here.
var vaultClientSettings = new VaultClientSettings("http://localhost:8200", authMethod);
IVaultClient vaultClient = new VaultClient(vaultClientSettings);
var myKeys = await vaultClient.V1.Secrets.Cubbyhole.ReadSecretAsync("my-path");
}

Es 19: SecretsWithVault
112

Handling secrets

AzureKeyVault

VU,

How to use it?

c#

SecretClientOptions options = SecretClientOptions()
{

Retry =

{
Delay= TimeSpan.FromSeconds(2),
MaxDelay = TimeSpan.FromSeconds(16),
MaxRetries = 5,
Mode = RetryMode.Exponential

¥

1

I

client = SecretClient(Uri("https <your-unique-key-vault-name>.vault.azure.net DefaultAz

KeyVaultSecret secret = client.GetSecret("<mySecret:

secretValue = secret.Value;

113

« _User
Authorization

User authentication/authorization

Client
Fe=me—m—--—-—-—-————————- = 1
: ' o APl Management App Service
[] ! 1
X o> ! Client (5] U\
' & 2 F———Request Send to _)‘ é
: : with JWT backend »
: :
b---- ' 4]

Validate JWT

and claims
(1] 2]
Receive token Q Don't spread security
Provide client credentials Concepts around your
Azure Active Directory SEIvices

How can we manage Authorization in distributed
application?

115

Contexts

How can we manage Authorization in distributed
application?

Context: a way to pass data between methods and grains

Set context

RequestContext.Set("UserRole", "Admin");

Get context
Statics methods but we are in a

multi thread environment!

RequestContext.Get("UserRole");

https://learn.microsoft.com/en-us/dotnet/orleans/grains/request-context

https://learn.microsoft.com/en-us/aspnet/core/fundamentals/http-context

Es 20: MicrosoftOrleansRequestContext
116

https://learn.microsoft.com/en-us/dotnet/orleans/grains/request-context
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/http-context

Contexts

AsyncLocal

Represents ambient data that is local to a given
asynchronous control flow, such as an asynchronous
method.

AsynclLocal<T> is used to persist a value across an
asynchronous flow.

https://learn.microsoft.com/en-us/dotnet/api/system.threading.asynclocal-1?view=net-8.0

117

https://learn.microsoft.com/en-us/dotnet/api/system.threading.asynclocal-1?view=net-8.0

O

‘NET Aspire

A\ NET Aspire

A cloud ready stack for building observable,

production ready, distributed applications

First Preview Available Today

aka.ms/dotnet-aspire

Engage with team on GitHub

github.com/dotnet/aspire

NET Aspire

.NET Aspire is an opinionated stack for building
resilient, observable, and configurable cloud-native
applications with .NET

var builder = DistributedApplication.CreateBuilder(args);
var apiservice = builder.AddProject<Projects.aspire_ApiService>("apiservice");

builder.AddProject<Projects.aspire_Web>("webfrontend")
.WithReference(apiservice);

builder.Build().Run();

119

NET Aspire: dashboard

4 aspire Dashboard

Projects

Projects

o Name State Start Time Process Id Source Location Endpoints Environm... Logs
ontainers

Executables apiservice Running 25/11/2023 15:20:48
Logs

D:\Projects\github.com\Parallel and Distributed Programming\Aspire.
webfrontend

http://localhost:5453 /weatherf... View View
Running 25/11/2023 15:29:48 D:\Projects\github.com\Parallel and Distributed Programming\Aspire. http://localhost View View
Project
Container

Executable
Structured
[Traces

Metries

Es 21: Aspire

120

NET Aspire: deploy

https://learn.microsoft.com/en-us/dotnet/aspire/deployment/overview

Microsoft Azure (Preview) 2 Search resources, services, and docs (G+/) _

Dashboard »

(4] aspire2aca00irg + * - X

Resource group
= Create 5.':@3 Manage view i Delete resource group O Refresh % Export to CSV Eﬁ'Openquew’) Assign tags -

~ Essentials View Cost | JSON View

Resources Recommendations

Filter for any field... Type equals all > Location equals all +v add filker

Showing 1to 7 of 7 records.] Show hidden types

No grouping ~ ‘ | == List view R
I:‘ Name T Type T Location TJ
I:‘ & acaefem77Tywwadew Container Apps Environment West US
I:‘ [apiservice Container App West US
I:‘ @ aspire2aca00icr Container registry West US
I:‘ » aspire2aca001id Managed Identity West US
D @ logstém777ywwsdew Log Analytics workspace West US
D i redis Container App West US
D B web Container App West US
< Previous | Page | 1w |of1 | Next > | ,@Giuefeedhack

dotnet run --project .\aspire.AppHost\aspire.AppHost.csproj --publisher
manifest --output-path aspire-manifest.json

121

https://learn.microsoft.com/en-us/dotnet/aspire/deployment/overview

NET Aspire: infrastructure as code

Projects
| |f| Containers
Executables

E] Logs

[Traces

& Metrics

https://www.youtube.com/watch?v=DORZA S7f9w

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddRedisContainer("cache"); h

var apiservice =
builder.AddProject<Projects.aspireWithRedis_ApiService>("apiservice");

builder.AddProject<Projects.aspireWithRedis_Web>("webfrontend")
.WithReference(apiservice)
.WithReference(cache); §

builder.Build().Run();

& aspireWithRedis Dashboard

Containers

Name Container ID State Start Time Container Image Endpoints

cache 03d0f7005... Running 25/11/2023 16:0... redis:latest Mone

https://www.youtube.com/watch?v=HYe6y1lkBuGI

Es 22: Aspire with Redis

122

https://www.youtube.com/watch?v=DORZA_S7f9w
https://www.youtube.com/watch?v=HYe6y1kBuGI

 Testing

O R T s e N
- ot opyrach ‘s i ; ol oaiilammmiie
DFeknd. b, | Femesnl 1)

DI————IM‘ L
i (i, sjandl |}

THE PYRAMID OF TESTS U"'":"-:“—::-

"'.!'l'!!m'!vnﬂqu)

Integration
Tests

of components

o=
of tests % CORGIBYTES

old code © new tricks

Unit test

public sealed class HelloGrain :

{

public HelloGrain()

{
}

Grain, IHelloGrain

public async Task<string> SayHello(string greeting)

{

await Task.Delay(100);
return $"Hello, {greeting}!";

namespace ProjectToTest.Tests

{

public class HelloGrainTests

{

[Fact]
public async Task TestSayHello()

{

// ARRANGE
var helloGrain = new HelloGrain();

// ACT
var result = await helloGrain.SayHello("Diego");

// ASSERT
Assert.Equal("Hello, Diego!", result);

Es 23: ProjectToTest
124

Unit test: mock a service

{

public sealed class HelloGrainUsingAService : Grain, IHelloGrainUsingAService

private readonly IAService _service;

public HelloGrainUsingAService(IAService service)

{
_service = service;
}
public async Task<int> Count()
{
return await _service.GetCoundFromDataBase();
}

NSubstitute

A friendly substitute for NET mocking libraries

N

R o

Es 23: ProjectToTest
125

Unit test: mock a service

public class HelloGrainUsingAServiceTests

{
[Fact]
public async Task TestCount()
{
// ARRANGE
var service = Substitute.For<IAService>();
service.GetCoundFromDataBase().Returns(5); —
var helloGrain = new HelloGrainUsingAService(service);
// ACT
var result = await helloGrain.Count();
// ASSERT
Assert.Equal(5, result);
}
}

126

Unit test: Orleans

The Microsoft.Orleans.TestingHost NuGet package contains TestCluster which can be
used to create an in-memory cluster, comprised of two silos by default, which can be used to
test grains.

public class HelloGrainTestsTestCluster

{
[Fact]
public async Task TestSayHello()
{
// ARRANGE
var builder = new TestClusterBuilder();
var cluster = builder.Build();
cluster.Deploy();
// ACT
var hello = cluster.GrainFactory.GetGrain<IHelloGrain>("my-id");
var result = await hello.SayHello("Diego");
cluster.StopAllSilos();
// ASSERT
Assert.Equal("Hello, Diego!", result);
}
}

hitps://learn.microsoft.com/en-us/dotnet/orleans/tutorials-and-samples/testing

127

https://learn.microsoft.com/en-us/dotnet/orleans/tutorials-and-samples/testing

Event Sourc

ing

Crud

Applications store their current state in a database:

1)
2)
3)
4)
5)

I Create - Read - Update - Delete

Previous state is lost

No way to restore states
Store operation could be slow
Data update conflicts

History is lost

https://learn.microsoft.com/en-us/azure/architecture/patterns/event-sourcing

CRUD

129

https://learn.microsoft.com/en-us/azure/architecture/patterns/event-sourcing

Event Sourcing

Event Sourcing

I |
ICreate - Read - Update - Delete

CRUD

Event Sourcing does not persist the current state of a record, but instead stores the individual
changes as a series of deltas that led to the current state over time.

Similar to the way a bank manages an account

500 (deposit)
+ 200 (deposit)

- 300 (payment)

= 400 (balance)

Events are immutable and can be stored using an append-only operation.

130

Event Sourcing: storing data as events

Event sourcing is a Microservice design pattern that involves capturing all changes to
an application’s state as a sequence of events, rather than simply updating the state
itself. Each event represents a discrete change to the system and is stored in an
event log, which can be used to reconstruct the system’s state at any point in time.

1)
2)
3)
4)

5)

The complete history of changes is available for auditing purposes.
The ability to query the state of the system at any point in time.
Easy integration with distributed systems.

Event-driven systems can scale horizontally by adding more event
consumers.

Easier to trace and diagnose issues by examining the event log.

Presentation
Some options for
consuming events

Cart created
| Cart
Cart Item
Cart ID
Item :I.Iaddod e N o
Customer Item key
Item 2 added Address Item name External
| " systems and
. Quantity licati
Item 1 i applications

|
Shipping information added
Query for

» current state

Event store of entities 13 1

Materialized View

Event Sourcing: problems

Complexity
Event sourcing can introduce complexity, especially in

understanding the flow of events and reconstructing the
current state from a series of events.

Performance

the process of replaying events to rebuild state or
responding to queries might impact performance,
especially as the volume of events grows

Storage

Storing every change as an event can lead to increased
storage requirements compared to traditional CRUD-
based approaches.

132

Event Sourcing: read models

--l] -

User Add item to Event

the cart
storage

Cart read Statistical read
model model

Production Marketing
Es 24: EventSourcing

https://www.davidguida.net/event-sourcing-in-net-core-part-1-a-gentle-introduction/

133

https://www.davidguida.net/event-sourcing-in-net-core-part-1-a-gentle-introduction/

	Parallel and Distributed Programming
	Hello!
	Diapositiva numero 3
	Diapositiva numero 4
	Diapositiva numero 5
	Diapositiva numero 6
	Why?
	How?
	Example of complex system?
	Main agenda
	How to start?
	How to start?
	Message Passing
	Message Passing
	Async programming
	Async programming (on single thread)
	Javascript – Callback and Promise
	In-process / sync
	In-process / sync with mediator pattern
	In-process / sync with mediator pattern
	In-process / sync with mediator pattern
	Out of process / async
	Out of process / async with producer/consumer
	Queue Producer
	Queue Consumer
	Queue Consumer – user feedback – polling vs websocket
	Diapositiva numero 27
	Out of-process / sync with microservice
	Out of-process / sync with microservice
	Out of-process / sync with microservice
	Communication types
	Out of-process / async with microservice - producer
	Out of-process / async with microservice - consumer
	Out of-process / async with microservice consumer
	Message broker
	Message broker
	Message broker
	RabbitMQ
	RabbitMQ
	RabbitMQ - Producer
	RabbitMQ - Consumer
	Distribute application with message broker
	Serialization performance
	Serialization performance
	Generate Ids on distributed application
	Distributed application with a framework
	Masstransit
	Masstransit - Producer
	Masstransit - Consumer
	Applications go wrong
	Applications go wrong
	Logging on distributed application
	Callect logs in one place
	Call logs in one place
	Observability
	Main concepts of observability
	Observability standard
	OpenTelemetry on distributed application
	Example
	Distributed lock
	Diapositiva numero 61
	Diapositiva numero 62
	Diapositiva numero 63
	Redis lock
	Saga
	Saga: consistency models
	Saga: trade off
	Saga approaches: choreography and orchestration
	Saga approaches: choreography and orchestration
	Saga with MassTransit
	Saga choreography
	Actor model
	Actor model
	Actor model
	Actor model
	Actor model: History 1973
	Actor model
	Actor model: life cycle
	Actor model: implementations
	Actor model implementations on Orleans�Microsoft research (2010)
	Actor model implementations on Orleans - Grain
	Actor model implementations on Orleans - Silo
	Actor model implementations on Orleans - Silo
	Actor model implementations on Orleans - Dashboard
	Actor model implementations on Orleans – Calling actors
	Actor model implementations on Orleans – Deadlock
	Actor model implementations on Orleans – Persistence
	Actor model implementations on Orleans – Streaming
	Actor model implementations on Orleans – Transactions
	Actor model: why?
	Actor model: why?
	Actor model: why?
	Actor model: why?
	Actor model: why?
	Actor model: why?
	Actor model: why?
	Actor model: when?
	Actor model: examples
	Actor model: examples
	Security in Distributed Applications
	Man in the middle
	Man in the middle
	Man in the middle
	Distributed Denial of Service
	Distributed Denial of Service
	Distributed Denial of Service
	Handling secrets
	Handling secrets
	Handling secrets
	Handling secrets
	Handling secrets
	Handling secrets
	Handling secrets
	User�Authorization
	User authentication/authorization
	Contexts
	Contexts
	.NET Aspire
	.NET Aspire
	.NET Aspire: dashboard
	.NET Aspire: deploy
	.NET Aspire: infrastructure as code
	Testing
	Unit test
	Unit test: mock a service
	Unit test: mock a service
	Unit test: Orleans
	Event Sourcing
	Crud
	Event Sourcing
	Event Sourcing: storing data as events
	Event Sourcing: problems
	Event Sourcing: read models

